مطالعه ویژگی های فنوتیپی، ژنوتیپی و دامنه میزبانی استرین های Pseudomonas savastanoi، عامل گال زیتون و خرزهره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه حشره‎شناسی و بیماری‎های گیاهی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

2 دانشیار پژوهش، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 استادیار، گروه حشره‎شناسی و بیماری‎های گیاهی، پردیس ابوریحان، دانشگاه تهران، تهران

4 استادیار پژوهش، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

به‌منظور مطالعه خصوصیات فنوتیپی، مولکولی، بیماری‌زایی و فیلوژنتیکی عوامل باکتریایی گال‌های زیتون و خرزهره، نمونه‌هایی از برگ، دمبرگ، شاخه و تنه این درختان که دارای علائم گره یا گال بودند، از شهرستان‎های مختلف استان‎های مازندران، گیلان، قزوین و تهران جمع‌آوری و به آزمایشگاه منتقل شد. از محیط‌کشت Kings’B برای جداسازی استفاده شد و ۱۸۰ جدایه با رنگدانه سبز فلورسانت خالص‎سازی شد. آزمون بیماری زایی استرین های جداشده از گال زیتون و گال خرزهره نشان داد که این استرین ها روی میزبان اصلی خود بیماری زا بودند. در آزمون‌های LOPAT، تولید لوان، آنزیم اکسیداز، آنزیم آرژنین‌دی‌هیدرولاز و پوسیدگی سیب‌زمینی، منفی و در آزمون فوق‌حساسیت در توتون و شمعدانی مثبت بودند. واکنش PCR با استفاده از آغازگرهای اختصاصی عوامل گال زیتون (PsvF/PsvR) و خرزهره (PsnF/PsnR) انجام شد و به ترتیب در 18 جدایه از نمونه‌های گال خرزهره و 14 جدایه از نمونه‌های گال زیتون باند به اندازه ۳۸۸ و ۳۴۹ تکثیر شد. براساس ویژگی‌های فنوتیپی، بیماری‎زایی و استفاده از آغازگرهای اختصاصی جدایه‌های زیتون و خرزهره به‎ترتیب، Pseudomonas savastanoi pv. savastanoi و P. savastanoi pv. nerii شناسایی شدند. به‌منظور تعیین دقیق جایگاه تاکسونومیکی جدایه‌ها از روش تجزیه و تحلیل توالی چند مکانی (MLSA) با تکثیر و توالی‌یابی قطعه‎ ای از سه ژن خانه‌دار rpoB، rpoD و gyrB استفاده شد. درخت‎های فیلوژنی مبتنی بر توالی ژن‎های gyrB و rpoB نتوانست استرین‎ های Psv و Psn را از هم تفکیک کند، درخت فیلوژنی رسم‎ شده بر اساس ژن rpoD استرین‎های Psv و Psn را از هم تفکیک کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Phenotypic and genotypic characteristics and host range of Pseudomonas savastanoi strains, the causal agents of olive and oleander

نویسندگان [English]

  • Golchehr Pourmohammadi 1
  • Ali Alizadeh Aliabadi 2
  • Nargues Falahi Charkhabi 3
  • AbulGhasem Ghasemi 4
1 Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran
2 Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
3 Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, Iran
4 Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Olive (Olea europaea) as an oily plant and oleander (Nerium oleander) as an ornamental and evergreen shrub are gorwn in Iran. Olive and oleander knot diseases are caused by Pseudomonas savastanoi pv. savastanoi (Psv) and P. savastanoi pv. nerii, respectively. Oleander gall samples were collected from Mazandaran province and olives knots were received from Guilan and Qazvin provinces. Symptoms including swollen lumps with a spongy, irregular appearance were observed on various host tissues, including petioles, branches, twigs, trunks, and leaflets. Fluorescent pigment colonies were appeared on King'S B medium after 48 hours incubation at 28°C. Pathogenicity of 14 and 18 strains among 150 and 180 isolated strains were confirmed on two years old olive and oleander trees, respectively. Moreover, four strains isolated from oleander were able to induce gall on olive trees. All strains were Gram-negative and catalase-positive. Strains were negative for levan production, oxidase, potato rot, and arginine dihydrolase activities and positive in production of hypersensivity reaction on tobacco. The 388 and 349 bp products were amplified in PCR using PsvF/R and PsnF/R primer pairs in Psv and Psn strains, respectively. Phylogenetic analyses based on the sequence of three house-keeping genes including rpoB, rpoD, and gyrB indicated that representative strains grouped with P. savastanoi pathovars.

کلیدواژه‌ها [English]

  • Iran
  • MLSA
  • LOPAT test
  • Pseudomonas
-Anonymous., 2021. Agricultural Statistics, available at https://maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj3-1399-sh.pdf.
-Ayers, S.H., Rupp, P. and Johnson, W.T., 1919. A study of alkali-forming bacteria in milk. U. S. Dept. Agric. Bull. No. 782.
-Baltrus, D.A., Mccann, H.C. and Guttman, D.S., 2017. Evolution, genomics and epidemiology of Pseudomonas syringae. Molecular Plant Pathology, 18: 152-168.
-Berge, O., Monteil, C.L., Bartoli, C., Chandeysson, C., Guilbaud, C. and Sands, D.C., 2014. A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PloS One 9, e105547.
-Bull, C.T., Clarke, C.R., CAI, R., Vinatzer, B.A., Jardini, T.M. and Koike, S.T., 2011. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytopathology, 101: 847-58.
-Caballo-Ponce, E., Murillo, J., Martinez-Gil, M., Moreno-Perez, A., Pintado, A. and Ramos, C., 2017. Knots untie: molecular determinants involved in knot formation induced by Pseudomonas savastanoi in woody hosts. Frontiers in Plant Science, 8: 1089.
-Carriero, F., Fontanazza, G., Cellini, F. and Giorio, G., 2002. Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theoretical and Applied Genetics; Heidelberg, 104(2-3): 301-307.
-Chapman, J.R., Taylor, R.K., Weir, B.S., Romberg, M.K., Vanneste, J.L., Luck, J. and Alexander, B.J.R., 2012. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology, 102: 1034-1044.
-Conde, C., Delrot, S. and Gerós, H., 2008. Physiological, biochemical and molecular changes occurring during olive development and ripening. Journal of Plant Physiology, 165: 1545-1562.
-Cowan, S.T., 1974. Cowan and Steel’s Manual for the Identification of Medical Bacteria. 2nd Edition, Cambridge University Press, Cambridge, pp. 67-83.
-Gardan, L., Bollet, C., Abu-Ghorrah, M.A., Grimont, F. and Grimont, P.A.D., 1992. DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. International Journal of Systematic and Evolutionary Microbiology, 42(4): 606-612.
-Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. and Grimont, D., 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. International Journal of Systematic Bacteriology, 49(6): 469-478.
-Ghasemi, A., Salehi, S., Shahriari, D. and Baniameri, V., 2006. Occurrence of oleander knot disease (Nerium oleander) in Tehran. Iranian Journal of Plant Pathology, 42: 703-704 (In Persian).
-Glaeser, S.P. and Kämpfer, P., 2015. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and Applied Microbiology, 38: 237-245.
-Gomila, M., Busquets, A., Mulet, M., Garcı́a-Valdés, E. and Lalucat, J., 2017. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Frontiers in Microbiology, 8: 2422.
-Gomila, M., Peña, A., Mulet, M., Lalucat, J. and García-Valdés, E., 2015. Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology, 6: 214.
-Hall, T.A., 1999, January. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, London, Information Retrieval Ltd., c1979-c2000, 41(41): 95-98.
-Hugh, R. and Leifson, E., 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. Journal of Bacteriology, 66: 24-26.
-Iacobellis N.S., 2001. Olive knot. In: Maloy, O.C., Murray T.D. (Eds). Encyclopedia of Plant Pathology. Vol. 1. John Wiley & Sons, Inc., New York, pp. 714-715.
-Iacobellis, N.S., Caponero, A. and Evidente, A., 1998. Characterization of Pseudomonas syringae ssp. savastanoi strains isolated from ash. Plant Pathology, 47(1): 73-83.
-Janse, J.D., 1981. The bacterial disease of ash (Fraxinus excelsior), caused by Pseudomonas syringae subsp. savastanoi pv. fraxini II. Etiology and taxonomic considerations. European Journal of Forest Pathology, 11(7): 425-438.
-Janse, J.D., 1982. Pseudomonas syringae subsp. savastanoi ex Smith subsp. nov., nom. rev., the bacterium causing excrescences on Oleaceae and Nerium oleander L. International Journal of Systematic Bacteriology, 32(2): 166-169.
-Kałużna, M., Willems, A., Pothier, J.F., Ruinelli, M., Sobiczewski, P. and Puławska, J., 2016. Pseudomonas cerasi sp. nov. (non griffin, 1911) isolated from diseased tissue of cherry. Systematic and Applied Microbiology, 39: 370-377.
-Kamiunten, H., Nakao, T. and Oshida, S., 2000. Pseudomonas syringae pv. Cerasicola, pv. Nov., the causal agent of bacterial gall of cherry tree. Journal of General Plant Pathology, 66(3): 219-224.
-Keesstra, SD., Rodrigo-Comino, J., Novara, A., Giménez-Morera, A., Pulido, M., Di Prima, S. and Cerdà, A., 2018. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 174: 95-103.
-Khezri, M., Ghasemi, A. and Ahangaran, A., 2019. Detection and characterization of endophytic bacteria causing knot in young olive trees. Acta agriculturae Slovenica, 113(1): 109-119.
-Klement, Z., Farkas, G.L. and Lovrekovich, L., 1964. Hypersensitive reaction induced by phytopatho genic bacteria in the tobacco leaf. Phytopathology, 54: 474-477.
-Kovacs, N., 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature, London, 178: 703.
-Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547.
-Lamichhane, J.R., Varvaro, L., Parisi, L., Audergon, J.M. and Morris, C.E., 2014. Disease and frost damage of woody plants caused by Pseudomonas syringae: seeing the forest for the trees. Advances in Agronomy, 126: 235-295.
-Lelliott, R., Billing, E. and Hayward, A., 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Microbiology, 29: 470-489.
-Maiden, M.C., Bygraves, J.A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K. and Caugant, D. A., 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, 95: 3140-3145.
-Marchi, G., Viti, C., Giovannetti, L. and Surico, G., 2005. Spread of levan-positive populations of Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot, in central Italy. European Journal of Plant Pathology, 112: 101-112.
-Morettia, C., Vinatzerb, B., Onofria, A.A., Valentinic, F. and Buonaurio, R., 2017. Genetic and phenotypic diversity of Mediterranean populations of the olive knot pathogen, Pseudomonas savastanoi pv. savastanoi. Plant Pathology, 66: 595-605.
-Moula, I., Boussadia, O., Koubouris, G., Hassine, M.B., Boussetta, W., Van Labeke, M.C. and Braham, M., 2020. Ecophysiological and biochemical aspects of olive tree (Olea europaea L.) in response to salt stress and gibberellic acid-induced alleviation. South African Journal of Botany, 132: 38-44.
-Mulet, M., Lalucat, J. and García-Valdés, E., 2010. DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology, 12: 1513-1530.
-Nowell, R.W., Green, S., Laue, B.E. and Sharp, P.M., 2014. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Biology and Evolution, 6: 1514-1529.    
-Parkinson, N., Bryant, R., Bew, J. and Elphinstone, J., 2011. Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology, 60: 338-344.
-Penyalver, R., García, A., Ferrer, A. and López, M.M., 1998. La tuberculosis del olivo: diagnóstico, epidemiología y control. Phytoma-España,102: 177-179.
-Quesada, J.M., Penyalver, R., Pérez-Panadés, J., Salcedo, C.I., Carbonell, E.A. and López, M.M., 2010. Comparison of chemical treatments for reducing epiphytic Pseudomonas savastanoi pv. savastanoi populations and for improving subsequent control of olive knot disease. Crop Protection, 29: 1413-1420.
-Rademaker, J.L.W. and De Bruijn, F.J., 1997. Characterization and classification of microbes by rep-pcr genomic fingerprinting and computer assisted pattern analysis chapter 10, p. 151-171. In: Caetano-Anollés, G., and Gresshoff P.M. (Eds.). DNA markers: protocols, applications and overviews. J. Wiley & Sons, inc., USA.
-Ramos, C., Matas, I.M., Bardaji, L., Aragon, I.M. and Murillo, J., 2012. Pseudomonas savastanoi pv. savastanoi: some like it knot. Molecular Plant Pathology, 13: 998-1009.
-Rodríguez-Moreno, L., Barceló-Muñoz, A. and Ramos, C., 2008. In vitro analysis of the interaction of Pseudomonas savastanoi pvs. savastanoi and nerii with micropropagated olive plants. Phytopathology, 98(7): 815-822.
-Salman, M., Greenhut, R., Preece, J., Ferguson, L. and Kluepfel, D., 2020. Field evaluation of olive (Olea europaea) genotypes for resistance to Pseudomonas savastanoi pv. savastanoi. Journal of Plant Pathology, 102: 663-670.
-Sarkar, S.F. and Guttman, D.S., 2004. Evolution of the Core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 70: 1999-2012.
-Schaad N.W., Jones J.B. and Chun, W., 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 2nd. Ed. St. Paul, MN, USA. Amer Phytopathol Soc Press, 373p.
-Schroth, M.N., Hildbrand, D.C. and Reilly, H.J., 1968a. Off-flavor of olives from trees with olive knot tumors. Phytopathology, 58: 524-5.
-Schroth, M.N. and Hildebrand, D.C., 1968b. A chemotherapeutic treatment for selectively eradicating crown gall and olive knot neoplasms. Phytopathology, 58(6): 848-854.
-Sisto, A. and Iacobellis, N.S., 1999. La “Rogna dell’ olivo”: aspetti patogenetici, epidemiologici e strategie di lotta. Olivo and olio, 2(12): 32-38.
-Smith, E.F., 1920. Pathogenicity of the olive knot organism on hosts related to the olive. Phytopathology, 12: 271-278.
-Smith, E.R. and Rorer, J.B., 1904. The olive tubercole. Science 480 (XIX): 416-417.
-Straub, C., Colombi, E., Li, L., Huang, H., Templeton, M.D., McCann, H.C. and Rainey, P.B., 2018. The ecological genetics of Pseudomonas syringae from kiwifruit leaves. Environmental Microbiology, 20: 2066-2084.
-Surico, G., 1977. Histological observations on olive knots. Phytopathologia Mediterranea, 16: 109-125.
-Suslow, T.V., Schroth, M.N. and Isaka, M., 1982. Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72: 917-918.
-Taghavi, M. and Hasani, S., 2012. Occurrence of Pseudomonas savastanoi the causal agent of winter jasmine gall in Iran. Iran Agricultural Research, 31(1): 39-48.
-Taghavi, S.M. and Ghasemi, Y., 2010. Etiology of chinaberry gall disease in Iran. Iran Agricultural Research, 29(1-2): 14-20.
-Tayeb, L., Elisabeth, A., Grimont, F. and Grimont, P., 2005. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for identification of isolates. Research in microbiology, 156: 763-73.
-Tegli, S., Cerboneschi, M. and Libelli, I.M., 2010. Development of a versatile tool for the simultaneous differential detection of Pseudomonas savastanoi pathovars by End Point and Real-Time PCR. BMC Microbiology, 10: 156.
-Thornely, M.J., 1960. The differentiation of pseudomonas from other gram-negative bacteria on the basis of arginine metabolism. Journal of Applied Microbiology, 23: 37-52.
-Visnovsky, S.B., Marroni, M.V. and Pushparajah, S., 2019. Using multilocus sequence analysis to distinguish pathogenic from saprotrophic strains of Pseudomonas from stone fruit and kiwifruit. European Journal of Plant Pathology, 155: 643-658.
-Yaish, MWF., 2006. Genetic mapping of quantitative resistance to race 5 of Pseudomonas syringae pv. phaseolicola in common bean. Euphytica, 152: 397-404.
-Yamamoto, S., Kasai, H., Arnold, D.L., Jackson, R.W., Vivian, A. and Harayama, S., 2000. Phylogeny of the genus Pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology, 146(10): 2385-2394.