بررسی رابطه بین فراوانی وقوع طوفان‌های گرد‌و‌غبار با متغیرهای دمایی در جنوب‌شرقی ایران (مطالعه موردی: استان سیستان و بلوچستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری کنترل و مدیریت بیابان، دانشکده کویرشناسی، دانشگاه سمنان، سمنان،

2 استاد، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران

3 استادیار، مرکز تحقیقات پژوهشگاه فضایی ایران، تهران، ایران

4 کارشناس ارشد سنجش از دور، مرکز تحقیقات پژوهشگاه فضایی ایران، تهران، ایران.

5 استادیار، موسسه آموزش و ترویج کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران. ایران

10.22092/ijfrpr.2025.368227.1657

چکیده

سابقه و هدف: گرمایش جهانی با تأثیر بر سرعت و شدت فرسایش می‌تواند بر روی سلامت و بهره‌وری خاک اثرگذار باشد. مطالعات قبلی در این زمینه نشان داده است، خطر فرسایش بادی در مناطق خشک و نیمه‌خشک به‌دلیل افزایش تبخیر از سطح خاک و  کاهش رطوبت خاک‌دانه‌ها بیشتر از سایر مناطق است. تغییرات دما می‌تواند به‌صورت مستقیم بر میزان آب خاک و تولید محصول در گیاهان تأثیر بگذارد. به‌عنوان‌مثال، دماهای بالا می‌تواند منجر به خشکی خاک و محدود‌شدن رشد گیاهان شود. خاک‌های خشک‌تر با پوشش گیاهی کمتر مستعد فرسایش بادی هستند. همچنین، تغییرات دمایی با تغییر گرادیان فشار در مناطق بیابانی و خشک باعث ایجاد بادهای شدید و دائمی می‌شوند که خود از دلایل اصلی ایجاد طوفان‌های گرد‌و‌غبار در این مناطق است.
مواد و روش‌ها: در این مطالعه رابطه بین متغیرهای دمای سطح زمین، دمای میانگین، حداکثر و حداقل و پوشش گیاهی بر روی فراوانی وقوع طوفان‌های گرد‌و‌غبار در استان سیستان و بلوچستان بررسی شد. این متغیرها در یک بازه زمانی 20 ساله از سال 2000 تا 2020 با استفاده از تصاویر ماهواره‌ای مادیس و داده‌های هواشناسی تهیه شد. از شاخص DSI برای بررسی روند تغییرات روزهای همراه با گرد‌و‌غبار استفاده گردید. همچنین، از روش شبکه عصبی پرسپترون چندلایه برای پیش‌بینی اهمیت متغیرهای مورد ‌مطالعه در فراوانی روزهای همراه با گرد‌و‌غبار استفاده شد. در طراحی شبکه عصبی پرسپترون تابع فعال ورودی برابر با سیگموئید و تابع فعال خروجی تابع همانی بود. شبکه مورد‌نظر با استفاده از یک لایه پنهان و 5 نورون طراحی شد. از روش رگرسیون خطی نیز برای بررسی روند تغییرات متغیرها استفاده شد.
نتایج و یافته‌ها: نتایج نشان داد، روند تغییرات شاخص DSI در منطقه مورد ‌مطالعه به‌صورت کاهشی و معنادار است (007/0= P-value). بیشترین و کمترین مقدار این شاخص به‌ترتیب برابر با 40 و 4 می‌باشد. نتایج همچنین نشان داد، شاخص LST و دمای حداکثر به‌ترتیب بیشترین اهمیت و متغیر NDVI کمترین اهمیت را در پیش‌بینی طوفان‌های گرد‌و‌غبار در منطقه مورد ‌مطالعه دارد. بیشترین و کمترین مقدار شاخص LST برابر با 10 و 6 درجه سلسیوس مشاهده شد. همچنین نتایج نشان داد، در سال‌های اخیر روند تغییرات این شاخص به‌صورت کاهشی و معنادار بوده است (03/0= P-value). از‌نظر تغییرات مکانی بیشترین مقدار شاخص LST در ایستگاه‌های زابل، ایرانشهر و سراوان و در مقابل کمترین مقدار این شاخص در ایستگاه‌های زاهدان، خاش و چابهار مشاهده شد. همچنین، بیشترین و کمترین مقدار شاخص دمای حداکثر برابر با 32 و 30 درجه سلسیوس می‌باشد. روند تغییرات این متغیر معنادار نبود.
نتیجه‌گیری: از بین متغیرهای دمایی مورد ‌مطالعه به‌ترتیب دمای سطح زمین و دمای حداکثر بیشترین تأثیر را در روند تغییرات شاخص طوفان گرد‌و‌غبار داشت. در منطقه مورد‌ مطالعه میانگین دمای سطح زمین و دمای حداکثر به‌ترتیب برابر با 8 و 31 درجه سلسیوس اندازه‌گیری شد که از این نظر می‌توانند تأثیرات زیادی را بر روی سایر عوامل محیطی مانند فشار هوا، باد، رطوبت خاک و ... داشته باشند. متغیر پوشش گیاهی، دمای میانگین و دمای حداقل نیز به‌ترتیب کمترین تأثیر را داشتند. روند تغییرات مکانی نیز نشان‌دهنده تأثیرپذیری روند تغییرات شاخص طوفان گرد‌و‌غبار از دمای سطح زمین و دمای حداکثر بود و شمال استان سیستان و بلوچستان وضعیت بحرانی‌تری را از‌نظر مقادیر طوفان گرد‌و‌غبار تجربه می‌کند. در‌مجموع می‌توان نتیجه گرفت، با توجه به نقش و اهمیت دمای سطح زمین در تغییرات شاخص DSI، در منطقه مورد ‌مطالعه، مدیریت و برنامه‌ریزی در استان سیستان و بلوچستان باید در جهت اجرای آمایش سرزمین مناسب و مدیریت تغییرات کاربری اراضی در جهت کاهش دمای سطح زمین و کنترل کانون‌های تولید گرد‌و‌غبار باید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An examination of the correlation between the occurrence of dust storms and temperature variations in southeastern Iran (case study: Sistan-Baluchistan Province)

نویسندگان [English]

  • Maede Nasry 1
  • Mohammad Rahimi 2
  • Hadi Jalili 3
  • Fereshteh Tarighat 4
  • Aliakbar Damavandi 5
1 PhD in Desert Management and Control, Combat to Desertification Department, Faculty of Desert Studies, Semnan University, Semnan, Iran
2 Corresponding Author, Professor, Combat to Desertification Department, Faculty of Desert Studies, Semnan University, Semnan, Iran
3 Assistant Professor, Iranian Space Research Institute, Tehran, Iran
4 M.Sc. in Remote Sensing, Iranian Space Research Institute, Tehran, Iran
5 Assistant Professor, Agricultural Education and Extension Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Background and Objectives: Global warming can influence soil health and productivity by accelerating the rate and intensity of erosion. Previous studies have shown that arid and semi-arid regions are at higher risk of wind erosion than other regions due to increased soil surface evaporation and reduced soil moisture. Temperature variations directly affect soil moisture and crop production in plants. For example, high temperatures cause soil drying, which limits plant growth. Drier soils with less vegetation cover are more prone to wind erosion. Furthermore, temperature changes modify the pressure gradient in desert and arid regions, leading to strong and persistent winds, which are among the main causes of dust storms in these areas.
Methodology: This study examined the relationship between the frequency of dust storms and land surface temperature (LST), mean temperature, maximum temperature (Tmax), minimum temperature (Tmin), and vegetation cover in Sistan-Baluchistan Province. These variables were derived from MODIS satellite imagery and meteorological data over a 20-year period (2000–2020). The DSI index was used to analyze the trend of dust storm days. A multilayer Perceptron neural network (MLP) was employed to predict the importance of the studied variables in the frequency of dust storm days. In designing the neural network, the input activation function was sigmoid, while the output activation function was identity. The network was structured with one hidden layer and five neurons. Linear regression was also used to evaluate the trends of variable changes.
Results: The results showed that the trend of changes in the DSI index in the study area was decreasing and statistically significant (P-value = 0.007). The highest and lowest values of this index were 40 and 4, respectively. The LST index and Tmax were the most important variables, while NDVI had the least importance in predicting dust storms in the study area. The highest and lowest values of the LST index were 10°C and 6°C, respectively. The trend of this index has decreased significantly in recent years (P-value = 0.03). Spatially, the highest LST values were recorded at Zabol, Iranshahr, and Saravan stations, while the lowest values were observed at Zahedan, Khash, and Chabahar. The highest and lowest Tmax values were 32°C and 30°C, respectively, and its trend was not statistically significant.
Conclusion: Among the temperature-related variables studied, LST and Tmax had the greatest impact on changes in the dust storm index. In the study area, the average LST and Tmax were measured at 8°C and 31°C, respectively, which can strongly influence other environmental factors such as air pressure, wind, and soil moisture. In contrast, NDVI, mean temperature, and Tmin had the least effect. The spatial variation pattern also confirmed the influence of LST and Tmax on DSI, with the northern part of Sistan-Baluchistan Province experiencing a more critical situation in terms of dust storm frequency. In conclusion, considering the key role of land surface temperature in DSI changes, management and planning in Sistan-Baluchistan should focus on appropriate land use planning and controlling land use changes to reduce surface temperature and limit dust storm sources.
 
 

کلیدواژه‌ها [English]

  • Remote sensing
  • climate change
  • wind erosion
  • adaptation
  • multilayer perceptron neural network
-Abbas, A., He, Q., Jin, L., Li, J., Salam, A., Lu, B. and Yasheng, Y., 2021. Spatial-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China. Remote Sensing, 13: 3792. https://doi.org/10.3390/rs13193792
-Ahmadi, M., Mirzaei, Z.S. and Dadashiroudbari, A., 2021. Investigation of seasonal distribution and abnormal trend of day and night surface temperature in Iran using MODIS sensor data. Physical Geography Research, 53(3): 351-364 (In Persian). https://doi.org/10.22059/jphgr.2021.323144.1007615
-Ansari ghojghar, M., Araghinejad, S., Bazrafshan, J. and Hoorfar, A., 2020. Trend Analysis of Dusty Days Frequency and its Correlation with Climatic Variables (Case Study: Lorestan Province). Iranian Journal of Soil and Water Research, 50(9): 2289-2301 (In Persian). https://doi.org/10.22059/ijswr.2018.259959.667940
-Azarakhshi, M., Farzadmehr, J., Eslah, M. and Sahabi, H., 2013. An Investigation on Trends of Annual and Seasonal Rainfall and Temperature in Different Climatologically Regions of Iran. Journal of Range and Watershed Managment, 66(1): 1-16 (In persian). https://doi.org/10.22059/jfwp.2013.35337
-Bagherabadi, R., 2021. Analysis the Change Trend dust events and its relationship with SPI index (Case Study: Ahvaz). Geography and Human Relationships, 4(3): 224-237 (In persian). https://doi.org/20.1001.1.26453851.1400.4.3.14.0
-Chou bin, B., Sajedi Hosseini, F., Rahmati, O., Mehdizadeh Youshanloei, M. and Jalali, M., 2022. Temporal and Spatial Variations of Dust Days in Western Azerbaijan Province, Determination of the Influencing Factors and Source of Events. Desert Management, 10(22): 71-86 (In Persian). https://doi.org/10.22034/jdmal.2022.550729.1378
-Dargahian, F. and Ashrafi, S., 2023. Investigation of dust storm intensity potential using comparison of horizontal visibility data and DSI index in Yazd province. Journal of Climate Research, 1401(52): 183-192 ((In Persian).).
-Farzanehpey, F., Ranjbar-Fordoe, A., Khosravi, H. and Mosavi, S.H., 2024. Evaluation of dust changes and its relationship with temperature (Case study: Khuzestan province). Integrated Watershed Management, 4(1):16-29 (In Persian). https://doi.org/10.22034/iwm.2024.2014553.1112
-Hall, D.K., Williams, J.R. and Bayr, K.J., 1992. Glacier recession in Iceland and Austria. Advancing Earth and Space Sciences. 24(3): 129-141. https://doi.org/10.1029/91EO00104
-Hamidi, H. and Safareeyeh, M., 2019. A Model to Analyze the Effect of Mobile Banking Adoption on Customer Interaction and Satisfaction: A Case Study of m-Banking in Iran. Telematics and Informatics, 38: 166-181. https://doi.org/10.1016/j.tele.2018.09.008
-Joorabian Shooshtari, S., Esmaili-Sari, A., Hosseini, S.M. and Gholamalifard, M., 2019. Application of Multilayer Perceptron Neural Network Method in Land Use Change Modeling in the East of Mzandaran Province. Geography and Environmental Planning, 29(4): 125-144 (In Persian). https://doi.org/10.22108/gep.2019.97390.0
-Kaskaoutis, D.G., Dumka, U.C., Rashki, A., Psiloglou, B.E., Gavriil, A., Mofidi, A., Petrinoli, K., Karagiannis, D. and Kambezidis, H.D., 2019. Analysis of intense dust storms over the eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmospheric Environment, 209 (15): 23-39. https://doi.org/10.1016/j.atmosenv.2019.04.025
-Khodam, N., Tajbakhsh, S., Beydokhti, A., Sehat, S. and Ranjbar, A., 2020. Dust Storm Climatology in Sistan and Baluchestan Province over a 30-year period (1987-2016). Journal of Climate Research, 1398(40): 81-89 (In Persian).
-Li, Z.L., Tang, B., Wu, H. and Sobrino, J., 2013. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sensing of Environment, 131: 14-37. https://doi.org/10.1016/j.rse.2012.12.008
-Malik, M.S and Shukla., J.P., 2018. Retrieving of Land Surface Temperature Using Thermal Remote Sensing and GIS Techniques in Kandaihimmat Watershed, Hoshangabad, and Madhya Pradesh. Journal of the Geological Society of India, 12 (9): 298-304. https://doi.org/10.1007/s12594-018-1010-y
-Maleki, S., Mir, M. and Rhdari, V., 2022. Investigating the change in the Sand and Dust Storms intensity in affected areas in Sistan Plain. Desert Ecosystem Engineering, 10(30): 111-125 (In Persian). https://doi.org/10.22052/deej.2021.10.30.59
-Mirmousavi, S.H. and Taran, Z., 2021. Investigation and analysis of the relationship between dust fluctuations and temperature and precipitation fluctuations in western and southwestern Iran. Journal of Geography and Planning, 25(77): 245-259 (In Persian). https://doi.org/ 10.22034/gp.2021.41606.2694
-Motavallizadeh Naeini, M and Modarres, R., 2022. Dust Storm Frequency in Connection with Climatic Change in the Arid Region of Iran. Journal of Water and Soil Science, 25 (4):239-252 (In Persian). https://doi.org/10.47176/jwss.25.4.43231
-Najibzade, N., Qaderi, K. and Ahmadi, M.M., 2020. Rainfall-Runoff modeling using Support Vector Regression and Artificial Neural Network Models (Case study: SafaRoud Dam Watershed). Iranian Journal of Irrigation and Drainage, 13(6): 1709-1720 (In Persian). https://doi.org/20.1001.1.20087942.1398.13.6.15.1
-Pouyan, S., Zare, M. and Ekhtesasi, M.R., 2019. Regional distribution and clustering of dust storm index (DSI) using linear moments approach. Journal of Range and Watershed Management, 72(1): 29-43 (In Persian). https://doi.org/10.22059/jrwm.2018.249574.1216
-Pourgholam-Amiji, M., ansarighojghar, M., Araghinejad, S. and Babaeian, I., 2021. Modeling the Relationship between Dust Storms and Extreme and Average Temperature Variables in the Western Half of Iran. Journal of Climate Research, 1400(45): 113-126 (In Persian).
-Rami, A., Hamidi, M. and Navayi Neya, B., 2022. Atmospheric analysis of dust storms in Sistan region. Journal of Atmospheric and Solar–Terrestrial Physics, 227 (2022): 105800. https://doi.org/10.1016/j.jastp.2021.105800
-Rashki, A., Middleton, N.J. and Goudie, A.S., 2021. Dust storms in Iran-Distribution, causes, frequencies and impacts. Aeolian Research, 48: 100655. https://doi.org/10.1016/j.aeolia.2020.100655
-Salam, M., Salam, M.K., Jahan, I. and Chowdhury, M.A., 2024. Assessing the impacts of vegetation loss and land surface temperature on Surface Urban Heat Island (SUHI) in Gazipur District, Bangladesh. Computational Urban Science, 4(24): 215-240. https://doi.org/10.1007/s43762-024-00136-y
-Wu, L., Zhao, C., Li, J., Yan, Y., Han, Q., Li, C. and Zhu, J., 2023. Impact of extreme climates on land surface phenology in Central Asia. Ecological Indicators, 146 (2023): 109832. https://doi.org/10.1016/j.ecolind.2022.109832
-Yan, Y., Mao, K., Shi, J., Piao, S., Shen, X., Dozier, J., Liu, Y., Ren, H. and Bao, Q., 2020. Driving forces of land surface temperature anomalous changes in North America in 2002–2018. Scientific Reports, 10: 6931. https://doi.org/10.1038/s41598-020-63701-5
-Zareie, S., Khosravi, H., Nasiri, A. and Dastorani, M., 2016. Using Land sat Thematic Mapped (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth Journal, 7(6): 1551-1564. https://doi.org/10.5194/se-7-1551-2016