تأثیر باکتری Bacillus thuringiensis subsp. kurstaki در اختلاط با نیمارین و ماترین روی آفت جنگلی پروانه ابریشم‏باف ناجورLymantria dispar

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری حشره‌شناسی، گروه گیاهپزشکی، دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران.

2 نویسنده مسئول، دانشیار، گروه گیاهپزشکی، دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران. پست الکترونیک: Sh.aramideh@urmia.ac.ir

چکیده

سابقه و هدف: ابریشم‏باف ناجورLymantria dispar L.  از آفات مهم درختان جنگلی و باغی محسوب می‏شود. این آفت روی طیف گسترده‏ای از گونه‏‏‏های درختی و درختچه‏ای تغذیه می‏کند. تغذیه از برگ‏‏‏های درختان توسط لارو‏‏‏های این آفت موضوعی بسیار شایع است. میزان رشد و تولید درختان آلوده به این آفت، حتی اگر خشک نشوند، در سال‏‏‏های بعد کاهش می‏یابد و این درختان متحمل خسارت جبران‏ناپذیری می‏شوند. کنترل شیمیایی آن موجب مخاطرات جدی مانند از بین بردن دشمنان طبیعی، مقاومت آفات، طغیان آفات جدید و آلودگی محیط‏زیست می‏شود، بنابراین، در این پژوهش تأثیر آفت‏کش‏‏‏های گیاهی نیمارین و ماترین در اختلاط با آفت‏کش میکروبی باکتری  Bacillus thuriugiensis subsp. Kurstaki (Btk)در کنترل لارو‏‏‏های ابریشم‏باف ناجور L. dispar ارزیابی شد.
مواد و روش‏‏‏ها: توده‏‏‏های تخم پروانه ابریشم‏باف ناجور از صنوبر‏‏‏های (Populous nigra L.) آلوده به این آفت در پردیس نازلوی دانشگاه ارومیه در سال 1402 جمع‏آوری و روی برگ‏‏‏های جوان و تازه صنوبر در اتاقک رشد (ژرمیناتور) پرورش داده شدند. برگ‏های صنوبر روزانه بررسی و با برگ‏های جوان و تازه جایگزین شد. باکتری مورد‏استفاده در این پژوهش فرمولاسیون تجاری Belthirul بر پایه Btk تولید کشور اسپانیا و شرکت پروبلت (Probelte) مادرید بود. حشره‏کش گیاهی نیمارین (Neemarin EC15%) عصاره گیاه چریش indica Juss A.  Azadirachtaو حاوی آزادیراختین، ساخت کشور هندوستان است. این حشره‌کش از مؤسسه تحقیقات گیاه‏پزشکی کشور تهیه شد. ماترین با نام تجاری روی آگرو (Rui Agro) حشره‏کشی تماسی و گوارشی است و فراورده عصاره ریشه گیاهی تلخ‏بیانSophora flavescens Ait.  ساخت کشور چین است. این حشره‌کش زیر نظر شرکت اکوسرت (Ecocert)  فرانسه تولید می‌شود. آزمایش‏‏‏های زیست‏سنجی شامل تأثیر نیمارین، ماترین و باکتری Btk و اختلاط آنها، همچنین تأثیر غلظت زیرکشنده (LC25) آنها در دگردیسی آفت شامل تبدیل مرحله لاروی به شفیره و مرحله شفیرگی به حشره کامل در شرایط آزمایشگاهی داخل اتاقک رشد با دمای 2±27 درجه سلسیوس و رطوبت نسبی 5±65 درصد روی لارو‏‏‏های سن دوم و سوم آفت انجام شد. همچنین، اثر غلظت‏های توصیه‏شده ترکیبات در شرایط صحرایی روی لارو‏‏‏های سن سوم این آفت بررسی و ارزیابی گردید.
نتایج و یافته‏‏‏ها: نتایج حاصل از تجزیه پروبیت غلظت‏‏‏های مختلف نیمارین 00/150، 50/267، 00/385، 50/502 و 00/620، ماترین 50/22، 25/38، 00/54، 75/69 و 50/85 و باکتری Btk 00/300، 50/712، 00/1125، 50/1537 و 00/1950 پی‏پی‏ام بعد از 24 و 48 ساعت نشان داد با توجه به LC50 حاصل، ماترین سمیت بیشتری نسبت به نیمارین و باکتری Btk دارد. همچنین در بررسی اثر تلفیقی ترکیبات، نتایج نشان داد، در سطح اطمینان 95 درصد بین تیمار‏‏ها اختلاف معنی‏داری وجود دارد و ترکیب نیمارین و ماترین با یکدیگر و با باکتری Btk بیشترین درصد کنترلی را بعد از 72 ساعت روی هر دو سن لاروی داشت. در بررسی تأثیر ترکیبات روی لارو‏‏های سن سوم پروانه ابریشم‏باف ناجور در شرایط صحرایی در تمام روز‏‏های بعد از محلول‏پاشی، بیشترین تلفات روی لارو سن سوم مربوط به تیمار ترکیب نیمارین+ ماترین و در مرحله بعد ترکیب ماترین+ Btk به دست آمد و در ارزیابی تأثیر غلظت زیرکشنده، نیمارین (94/136 پی‌پی‌ام)، ماترین (92/15 پی‌پی‌ام) و باکتری Btk (75/302 پی‌پی‌ام) روی تبدیل مرحله لاروی به شفیره و مرحله شفیرگی به حشره کامل، بیشترین میزان بازدارندگی در تیمار نیمارین مشاهده شد.
نتیجه‏گیری: با در نظر گرفتن محدودیت استفاده و ‏‏اثرهای سوء آفت‏کش‏‏‏های شیمیایی، استفاده از ترکیبات بیولوژیک و گیاهی در کنترل آفات ضروریست. نتایج این بررسی نشان داد، در کنترل مرحله لاروی این آفت در شرایط آزمایشگاهی و صحرایی و تأثیر روی چرخه زندگی با استفاده از غلظت‏‏‏های زیر‏کشنده، این سه ترکیب زیستی از ظرفیت بالایی برخوردارند، همچنین می‏توان به‏صورت اختلاط برای افزایش تأثیر استفاده کرد، بنابراین، در کنترل لارو‏‏‏های این آفت و آفت‏های مشابه در ‏‏باغ‏ها و جنگل‏ها توصیه می‏شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Bacillus thuringiensis B. in mixed with Neemarin and Matrine against forest pest, Lymantria dispar L.

نویسندگان [English]

  • Mahdieh Mousavi 1
  • Shahram Aramideh 2
  • Samaneh Akbari 1
1 PhD in Entomology, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Corresponding author, Associate Professor., Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Background and objectives: The gypsy moth, Lymantria dispar L., is one of the most significant pests of forest and orchard trees, feeding on a wide range of tree and shrub species. Larval feeding on tree leaves is a common occurrence that severely impacts tree growth and productivity. Even if infested trees do not die, they experience significant reductions in growth and yield in subsequent years, leading to irreversible damage. Chemical control poses serious risks, including the destruction of natural enemies, pest resistance, secondary pest outbreaks, and environmental pollution. Therefore, this study aimed to evaluate the efficacy of botanical pesticides Neemarin and Matrine, in combination with the microbial pesticide Bacillus thuringiensis subsp. kurstaki (Btk), for controlling L. dispar larvae.
Methodology: Egg masses of L. dispar were collected from infested black poplar (Populus nigra L.) trees on the Nazloo campus of Urmia University in 2023 and reared on fresh poplar leaves in a growth chamber. The leaves were replaced daily with fresh ones. The microbial pesticide used was the commercial formulation Belthirul, based on Btk (Problet, Madrid, Spain). Neemarin (Neemarin EC15%) is an Azadirachta indica Juss A. extract containing azadirachtin, manufactured in India and procured from the Iranian Research Institute of Plant Protection. Matrine (brand name: Rui Agro) is a contact and oral insecticide derived from Sophora flavescens Ait., produced in China under the supervision of Ecocert France. Bioassay experiments were conducted to assess the effects of Neemarin, Matrine, and Btk individually and in combination on second and third instar larvae. Additionally, the impact of sublethal concentrations (LC25) of these compounds on pest metamorphosis (larval-to-pupal and pupal-to-adult transformation) was evaluated under laboratory conditions using a germinator (27±2 °C, 65±5% relative humidity). The effectiveness of recommended concentrations was also tested on third instar larvae under field conditions.
Results: Probit analysis of different concentrations of Neemarin (150.00, 267.50, 385.00, 502.50, 620.00 ppm), Matrine (22.50, 38.25, 54.00, 69.75, 85.50 ppm), and Btk (300.00, 712.50, 1125.00, 1537.50, 1950.00 ppm) after 24 and 48 hours showed that Matrine had higher toxicity (lower LC50) than Neemarin and Btk. The combined treatments demonstrated significant differences (P<0.05), with the Neemarin+Matrine+Btk mixture causing the highest larval mortality after 72 hours in both instars. Under field conditions, the highest third instar larval mortality was observed in the Neemarin+Matrine treatment, followed by Matrine+Btk. Evaluating sublethal concentrations of Neemarin (136.94 ppm), Matrine (15.92 ppm), and Btk (302.75 ppm) on larval metamorphosis revealed that Neemarin had the highest inhibitory effect on larval transformation to pupae and pupal development into adults.
Conclusion: Given the limitations and adverse effects of chemical pesticides, the use of biological and botanical alternatives for pest control is essential. The results of this study demonstrated that these biological compounds, both individually and in combination, effectively control L. dispar larvae under laboratory and field conditions. Additionally, sublethal concentrations significantly disrupted the pest’s life cycle. Therefore, these bio-insecticides, particularly in combination, can be recommended as effective alternatives for managing L. dispar larvae and similar pests in forests and orchards.

کلیدواژه‌ها [English]

  • Forest pest
  • plant pesticides
  • microbial pesticides
  • biological control
-Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
-Abedi, Z., Saber, M., Vojoudi, S., Mahdavi, V. and Parsaeyan, E., 2014. Acute, sublethal, and combination effects of Azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science, 14(1): 30-39.
-Adiroubane, D. and Raghuraman, K., 2008. Plant products and microbial formulation in the management of brinjal shoot and fruit borer, Leucinodes orbonalis (Guenee.). Journal of Biopesticides, 1: 124-129.
-Akhanaev, Y.B., Tomilova, O.G., Yaroslavtseva, O.N., Duisembekov, B.A., Kryukov, V.Y. and Glupov, V.V., 2017. Combined action of the entomopathogenic fungus Metarhizium robertsii and avermectins on the larvae of the Colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera, Chrysomelidae). Entomological Review, 97(2): 158-165.
-Ali, S., Zhang, C., Wang, Z., Wang, X., Wu, J., Cuthbertson, A.G.S., Shao, Z. and Qiu, B., 2017. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide Matrine against Bemisia tabaci (Gennadius). Scientific Reports, 7: 46558.
-Alimohamadian, M., Aramideh, Sh., Mirfakhraie, Sh. and Frozan, M., 2022. Effect of Bacillus thuringiensis var. kurstaki in combination with Neemarin and silica nanoparticles in the control of second instar larvae of sugar beet, Spodoptera exigua Hb. (Lep.: Noctuidae) in laboratory condition. The Quarterly Scientific Journal of Applied Biology, 34(4): 148-163.
-Almeida, G.D., Zanuncio, J.C., Senthil-Nathan, S., Pratissoli, R., Polanczyk, R.A., Azevedo, D.O. and Serrão, J. E., 2014. Cytotoxicity in the midgut and fat body of Anticarsia gemmatalis (Lepidoptera: Geometridae) larvae exerted by neem seeds extract. Invertebrate Survival Journal, 11: 79-86.
-Amirfanak, V., Safavi, S.A. and Forouzan, M., 2023. Study on the life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) influenced by sublethal concentrations of the Matrine. Plant Protection (Scientific Journal of Agriculture), 45(4): 19-35.
-Aramideh, Sh., 2016. Effect of active charcoal and starch on enhancement pathogenicity of Bacillus thuringiensis var. kurstaki against second instars larvae of ash tree pest Nyssia graecarius Staudinger (Lep.: Geometridae). Forest Research and Development, 2(2): 145-154.
-Azimi, M., Aramideh, Sh., Mirfakhraie, Sh., Hosseinzadeh, A. and Michaud, J.P., 2024. Efficacy of the parasitoid wasp, Habrobracon hebetor in integrating with Matrine and Bacillus thuringiensis in the control of Anagasta kuehniella. Plant Pest Research, 13(4): 1-15.
-Benelli, G., Canale, A., Toniolo, C., Higuchi, A., Murugan, K., Pavela, R. and Nicoletti, M., 2017. Neem (Azadirachta indica): Towards the Ideal Insecticide?. Natural Product Research, 31: 369-386.
-Bezerra, D.G., de Andrade, I.R., Santos, H.L.V., Xavier, M.D.d.S., Fernandes, P.Í., Devilla, I.A., Nascimento, T.L., Borges, L.L., da Conceição, E.C. and Paula, J.A.M.d., 2021. Azadirachta indica A. Juss (Meliaceae) Microencapsulated Bioinsecticide: Spray Drying Technique Optimization, Characterization, in Vitro Release, and Degradation Kinetics. Powder Technology, 382: 144-161.
-Cheng, X., Ye, J., He, H., Liu, Z., Xu, C., Wu, B., Xiong, X., Shu, X., Jiang, X. and Qin, X., 2018. Synthesis, characterization and in vitro biological evaluation of two Matrine derivatives. Scientific Reports, 8(1): 15686.
-Cocco, A., Cossu, A.Q., Erre, P., Nieddu, G. and Luciano, P., 2010. Spatial analysis of gypsy moth populations in Sardinia using geostatistical and climate models. Agricultural and Forest Entomology, 12: 417-426.
-Crickmore, N., 2006. Beyond the spore–past and future developments of Bacillus thuringiensis as a biopesticide. Journal of Applied Microbiology, 101: 616-619.
-Dader, B., Aguirre, E., Caballero, P. and Medina, P., 2020. Synergy of lepidopteran nucleopolyhedroviruses AcMNPV and SpliNPV with insecticides. Insects, 11(5): 316.
-El-mageed, A.E.M.A. and Shalaby, S.E.M., 2011. Toxicity and biochemical impacts of some new insecticide mixtures on cotton leafworm Spodoptera littoralis (Boisd.). Plant Protection Science, 47: 166-175.
-Erb, S.L., Bourchier, R.S., Van Frankenhuyzen, K. and Smith, S.M., 2001. Sublethal effects of Bacillus thuringiensis Berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the tachinid parasitoid Compsilura concinnata (Diptera: Tachinidae). Environmental Entomology, 30(6): 1174-1181.
-Furlong, M.J. and Groden, E., 2001. Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. Journal of Economic Entomology, 94(2): 344-356.
-Ghassemi-Kahrizeh, A. and Aramideh, Sh., 2014. Study on the synergistic effect of Henna in enhancement of pathogenicity of Bacillus thuringiensis Berliner on third and fourth instars larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae). Archives of Phytopathology and Plant Protection, 47(12): 1497-1507.
-Göldel, B., Lemic, D. and Bažok, R., 2020. Alternatives to synthetic insecticides in the control of the Colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits. Agriculture, 10-611.
-Helson, B.V., Barry Lyons, D., Wanner, K.W. and Taylor, A.S., 2001. Control of conifer defoliators with neem-based systemic bioinsecticides using a novel injection device. The Canadian Entomologist, 133: 729-744.
-Hesketh, H. and Hails, R.S., 2015. Bacillus thuringiensis impacts on primary and secondary baculovirus transmission dynamics in Lepidoptera. Journal of Invertebrate Pathology, 132: 171-181.
-Hlasny, T., Trombik, J., Holuša, J., Lukášová, K., Grendár, M., Turčáni, M., Zúbrik, M., Tabaković-Tošić, M., Hirka, A., Buksha, I. and Modlinger, R., 2016. Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. Journal of Pest Science, 89: 413-425.
-Hosseinzadeh, A. and Aramideh, S., 2016. Toxicity of Bacillus thuringiensis var. kurstaki and Spinosad on three larval stages of beet armyworms Spodoptera exigua (Hübner) (Lep: Noctuidae). Journal of Entomology and Zoology Studies, 4(5): 375-379.
-Hwang, H.S., Acharya, R., Lucas, M.D.C., Sharma, S.R., Lee, Y.S. and Lee, K.Y., 2023. Effects of Lymantria dispar multiple nucleopolyhedrovirus and Bacillus thuringiensis var. kurstaki on different larval instars of Lymantria dispar asiatica. Archives of Insect Biochemistry and Physiology, 113(1): e22002.
-Karimzadeh Esfahani, J., 2014. Investigating the efficiency of the new insecticide Rui Agro (Matrine) in the control of cabbage moth. Agricultural Research, Education and Extension Organization, 20 (In Persian).
-Konecka, E., Kaznowski, A. and Tomkowiak, D., 2019. Insecticidal activity of mixtures of Bacillus thuringiensis crystals with plant oils of Sinapis alba and Azadirachta indica. Annals of Applied Biology, 174(3): 364- 371.
-Konecka, E., Kaznowski, A., Grzesiek, W., Nowicki, P., Czarniewska, E. and Baranek, J., 2020. Synergistic interaction between carvacrol and Bacillus thuringiensis crystalline proteins against Cydia pomonella and Spodoptera exigua. BioControl, 65: 447-460.
-Kouhjani Gorji, M., 2023. Investigation of the efficacy of three botanical insecticides, Neem Azal®, Ruy Agro®, and Bio1®, on the boxwood moth Cydalima perspectalis Walker (Lep.: Crambidae). Iranian Journal of Forest and Range Protection Research, 21(1): 187-199.
-Kryukov, V.Y., Khodyrev, V.P., Yaroslavtseva, O.N., Kamenova, A.S., Duisembekov, B.A. and Glupov, V.V., 2009. Synergistic action of entomopathogenic hyphomycetes and the bacteria Bacillus thuringiensis ssp. morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Applied Biochemistry and Microbiology, 45: 511-516.
-Kryukov, V.Y., Tomilova, O.G., Luzina, O.A., Yaroslavtseva, O.N., Akhanaev, Y.B., Tyurin, M.V., Duisembekov, B.A., Salakhutdinov, N.F. and Glupov, V.V., 2018. Effects of fluorine-containing usnic acid and fungus Beauveria bassiana on the survival and immune–physiological reactions of Colorado potato beetle larvae. Pest Management Science, 74: 598-606.
-Kumar, P., Poehling, H.M. and Borgemeister, C., 2005. Effects of different application methods of Azadirachtin against sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants. Journal of Applied Entomology, 129: 489-497.
-Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S., 2015. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132: 1-41.
-Lengai, G.M.W., Muthomi, J.W. and Mbega, E.R., 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7: 1-13.
-Lentini, A., Mannu, R., Cocco, A., Ruio, P.A., Carboneschi, A. and Luciano, P., 2019. Long-term monitoring and microbiological control programs against lepidopteran defoliators in Sardinian cork oak forests (Italy). Annals of Silvicultural Research, 45(1): 21-30.
-Liebhold, A. M., Elkinton, J. S., Zhou, C., Hohn, M. E., Rossi, R. E., Boettner, G. H., ... and McManus, M. L., 1995. Regional correlation of gypsy moth (Lepidoptera: Lymantriidae) defoliation with counts of egg masses, pupae, and male moths. Environmental Entomology, 24(2): 193-203.‏
-Mannu, R., Cocco, A., Luciano, P. and Lentini, A., 2020. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests. Pest Management Science, 76(3): 1103-1111.
-Martemyanov, V.V., Bykov, R.A., Demenkova, M., Gninenko, Y., Romancev, S., Bolonin, I., Mazunin, I., Belousova, I.A., Akhanaev, Y.B., Pavlushin, S.V., Krasnoperova, P. and Ilinsky, Y., 2019. Genetic evidence of broad spreading of Lymantria dispar in the West Siberian Plain. Plos One, 14(8): e0220954.
-Massaguni, R. and Latip, S.N.H.M., 2012. Neem crude extract as potential biopesticide for controlling golden apple snail, Pomacea canaliculata. In: Soundararajan, R. P., (Ed.). Advances in Chemical and Botanical Pesticides. In Tech, Rijeka, Croatia, 233-254.
-Medo, I. and Marcic, D., 2013. The effects of Kingbo biopesticide on Tetranychus urticae Koch female adults. Pesticides and Phytomedicine (Belgrade), 28: 195-202.
-Mhalla, D., Farhat-Touzri, D.B., Tounsi, S. and Trigui, M., 2018. Combinational effect of Rumex tingitanus (Polygonaceae) hexane extract and Bacillus thuringiensis δ-endotoxin against Spodoptera littoralis (Lepidoptera: Noctuidae). BioMed Research International, 1: 3895834.
-Mohamadi, D., Evazian Kari, N. and Sharifi Azar, Z., 2020. Enhancing Efficiency of Bacillus thuringiensis by Leaf Extract of Cupressus arizonica against Spodoptera exigua (Lep.: Noctuidae). Journal of Applied Research in Plant Protection, 9(1): 89-105.
-Moradi Afrapoli, F., Mohammadi Sharif, M., Barimani Varandi, H. and Shayanmehr, M., 2022. Susceptibility of Cydalima perspectalis (Lepidoptera: Crambidae) larvae to some reduced-risk insecticides in laboratory bioassays. Journal of Forest Science, 68(7): 253-262.
-Nikakhtar, S., Aramideh, S., Mirfakhraie, S. and Frouzan, M., 2022. Effect of three commercial formulations includes Nimbecidine, Neemazal T/S and Kofa from plant compound of neem on the biological stages of Trialeurodes vaporariorum (Hem.: Aleyrodidae) and its parasitoid, Encarsia formosa.‏ Plant Pest Research, 12(1): 59-72.
-Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z. and Kamita, S. G., 2016. Individual and combined effects of Bacillus thuringiensis and Azadirachtin on Plodia interpunctella Hubner (Lepidopetra: Pyralidae). Journal of Insect Science, 16(1): 95.
-Ochieng, T.A., Akutse, K.S., Ajene, I.J., Kilalo, D.C., Muiru, M., and Khamis, F.M., 2024. Interactions between Bacillus thuringiensis and selected plant extracts for sustainable management of Phthorimaea absoluta. Scientific Reports, 14(1): 9299.‏
-Ojha, P.K., Kumari, R. and Chaudhary, R.S., 2017. Impact of certain bio-pesticides on larval mortality of Helicoverpa armigera Hübner (Noctuidae: Lepidoptera) in chickpea. Journal of Entomology and Zoology Studies, 5(2): 1083-1091.
-Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., Mcfield, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., van der Sluijs, J.P., van Dyck, H. and Wiemers, M., 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22: 68-102.
-Pisa, L., Goulson, D., Yang, E.C., Gibbons, D., Sanchez-Bayo, F., Mitchell, E., Aebi, A., van der Sluijs, J., MacQuarrie, C.J.K., Giorio, C., Long, E.Y., McField, M., van Lexmond, M.B. and Bonmatin, J.M., 2017. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 28: 1749-11797.
-Rahman, S., Biswas, S.K., Barman, N.C. and Ferdus, T., 2016. Plant extract as selective Pesticide for integrated pest management. Biotechnological Research, 2(1): 6-10.
-Robertson, J.L., Russell, R.M., Preisler, H.K. and Savin, N.E., 2007. Bioassays with arthropods. Boca Raton, CRC Press, 199p.
-Ruiu, L., Mannu, R., Falchi, G., Braggio, A. and Luciano, P., 2013. Evaluation of different Bacillus thuringiensis sv kurstaki formulations against Lymantria dispar and Malacosoma neustria larvae infesting Quercus suber trees. Redia, 96: 27-31.
-Ruiu, L., Ruiu, P.A. and Lentini, A., 2021. Comparative efficacy trials with two different Bacillus thuringiensis Serovar kurstaki strains against gypsy moth in mediterranean cork oak forests. Forests, 12(5): 602.
-Singh, G., Rup, P.J. and Koul, O., 2007. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lep.: Noctuidae) larvae. Bulletin of Entomological Research, 97(4): 351-357.
-Siqueira, H.A.A., Moellenbeck, D., Spencer, T. and Siegfried, B.D., 2004. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lep.: Crambidae) to Bacillus thuringiensis δ-endotoxins. Journal of Economic Entomology, 97: 1049-1057.
-Souto, A.L., Sylvestre, M., Tölke, E.D., Tavares, J.F., Barbosa-Filho, J.M. and Cebrián-Torrejón, G., 2021. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16): 4835.
-Tabashnik, B.E., Liu, Y.B., Unnithan, D.C., Carriere, Y., Dennehy, T.J. and Morin, S., 2004. Shared genetic basis of resistance to B.T. toxin Cry1Ac in independent strains of pink bollworm. Journal of Economic Entomology, 97: 721-726.
-Taheri Sarhozaki, M., Aramideh, S., Akbarian, J. and Pirsa, S., 2020. The effect of zinc oxide nanoparticles, kaolin powder and Beauveria bassiana (Balsamo) Vuillemin in combination with Neemarin® against Bemisia tabaci and pupae of Eretmocerus mundus under field conditions. Plant Protection (Scientific Journal of Agriculture), 43(3): 1-19.‏
-Tavakoli, M., Hosseini-Chegeni, A. and Khaghaninia, S., 2018. The first report of Gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae) outbreak from Northern Zagros forests and its identification using COI gene in Iran. Iranian Journal of Forest and Range Protection Research, 16(2): 207-218.
-Tiberi, R., Branco, M., Bracalini, M., Croci, F. and Panzavolta, T., 2016. Cork oak pests: a review of insect damage and management. Annals of Forest Science, 73: 219-232.
-Togbe, C.E., Zannou, E., Gbehounou, G. and Kossou, H.A., 2014. BBC: Biological based combinations- a concept way forward in sustainable pest management. International Journal of Tropical Insect Science, 34: 248-259.
-Woodward, S.L. and Quinn, J.A., 2011. Encyclopedia of invasive species: from Africanized honey bees to zebra mussels. Greenwood, California USA, 764p.
-Wu, J., Yu, X., Wang, X., Tang, L. and Ali, S., 2019. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, 10: 1812-1825.
-Xu, X., Yu, L. and Wu, Y., 2005. Disruption of a cadherin gene associated with resistance to Cry1Ac d-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71: 948-954.
-Yaroslavtseva, O.N., Dubovskiy, I.M., Khodyrev, V.P., Duisembekov, B.A., Kryukov, V.Y. and Glupov, V.V., 2017. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. Journal of Insect Physiology, 96: 14-20.
-Zanardi, O.Z., Ribeiro, L.P., Ansante, T.F., Santos, M.S., Bordini, G.P., Yamamoto, P.T. and Vendramim, J.D., 2015. Bioactivity of a Matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67: 160-167.