-Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
-Abedi, Z., Saber, M., Vojoudi, S., Mahdavi, V. and Parsaeyan, E., 2014. Acute, sublethal, and combination effects of Azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science, 14(1): 30-39.
-Adiroubane, D. and Raghuraman, K., 2008. Plant products and microbial formulation in the management of brinjal shoot and fruit borer, Leucinodes orbonalis (Guenee.). Journal of Biopesticides, 1: 124-129.
-Akhanaev, Y.B., Tomilova, O.G., Yaroslavtseva, O.N., Duisembekov, B.A., Kryukov, V.Y. and Glupov, V.V., 2017. Combined action of the entomopathogenic fungus Metarhizium robertsii and avermectins on the larvae of the Colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera, Chrysomelidae). Entomological Review, 97(2): 158-165.
-Ali, S., Zhang, C., Wang, Z., Wang, X., Wu, J., Cuthbertson, A.G.S., Shao, Z. and Qiu, B., 2017. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide Matrine against Bemisia tabaci (Gennadius). Scientific Reports, 7: 46558.
-Alimohamadian, M., Aramideh, Sh., Mirfakhraie, Sh. and Frozan, M., 2022. Effect of Bacillus thuringiensis var. kurstaki in combination with Neemarin and silica nanoparticles in the control of second instar larvae of sugar beet, Spodoptera exigua Hb. (Lep.: Noctuidae) in laboratory condition. The Quarterly Scientific Journal of Applied Biology, 34(4): 148-163.
-Almeida, G.D., Zanuncio, J.C., Senthil-Nathan, S., Pratissoli, R., Polanczyk, R.A., Azevedo, D.O. and Serrão, J. E., 2014. Cytotoxicity in the midgut and fat body of Anticarsia gemmatalis (Lepidoptera: Geometridae) larvae exerted by neem seeds extract. Invertebrate Survival Journal, 11: 79-86.
-Amirfanak, V., Safavi, S.A. and Forouzan, M., 2023. Study on the life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) influenced by sublethal concentrations of the Matrine. Plant Protection (Scientific Journal of Agriculture), 45(4): 19-35.
-Aramideh, Sh., 2016. Effect of active charcoal and starch on enhancement pathogenicity of Bacillus thuringiensis var. kurstaki against second instars larvae of ash tree pest Nyssia graecarius Staudinger (Lep.: Geometridae). Forest Research and Development, 2(2): 145-154.
-Azimi, M., Aramideh, Sh., Mirfakhraie, Sh., Hosseinzadeh, A. and Michaud, J.P., 2024. Efficacy of the parasitoid wasp, Habrobracon hebetor in integrating with Matrine and Bacillus thuringiensis in the control of Anagasta kuehniella. Plant Pest Research, 13(4): 1-15.
-Benelli, G., Canale, A., Toniolo, C., Higuchi, A., Murugan, K., Pavela, R. and Nicoletti, M., 2017. Neem (Azadirachta indica): Towards the Ideal Insecticide?. Natural Product Research, 31: 369-386.
-Bezerra, D.G., de Andrade, I.R., Santos, H.L.V., Xavier, M.D.d.S., Fernandes, P.Í., Devilla, I.A., Nascimento, T.L., Borges, L.L., da Conceição, E.C. and Paula, J.A.M.d., 2021. Azadirachta indica A. Juss (Meliaceae) Microencapsulated Bioinsecticide: Spray Drying Technique Optimization, Characterization, in Vitro Release, and Degradation Kinetics. Powder Technology, 382: 144-161.
-Cheng, X., Ye, J., He, H., Liu, Z., Xu, C., Wu, B., Xiong, X., Shu, X., Jiang, X. and Qin, X., 2018. Synthesis, characterization and in vitro biological evaluation of two Matrine derivatives. Scientific Reports, 8(1): 15686.
-Cocco, A., Cossu, A.Q., Erre, P., Nieddu, G. and Luciano, P., 2010. Spatial analysis of gypsy moth populations in Sardinia using geostatistical and climate models. Agricultural and Forest Entomology, 12: 417-426.
-Crickmore, N., 2006. Beyond the spore–past and future developments of Bacillus thuringiensis as a biopesticide. Journal of Applied Microbiology, 101: 616-619.
-Dader, B., Aguirre, E., Caballero, P. and Medina, P., 2020. Synergy of lepidopteran nucleopolyhedroviruses AcMNPV and SpliNPV with insecticides. Insects, 11(5): 316.
-El-mageed, A.E.M.A. and Shalaby, S.E.M., 2011. Toxicity and biochemical impacts of some new insecticide mixtures on cotton leafworm Spodoptera littoralis (Boisd.). Plant Protection Science, 47: 166-175.
-Erb, S.L., Bourchier, R.S., Van Frankenhuyzen, K. and Smith, S.M., 2001. Sublethal effects of Bacillus thuringiensis Berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the tachinid parasitoid Compsilura concinnata (Diptera: Tachinidae). Environmental Entomology, 30(6): 1174-1181.
-Furlong, M.J. and Groden, E., 2001. Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. Journal of Economic Entomology, 94(2): 344-356.
-Ghassemi-Kahrizeh, A. and Aramideh, Sh., 2014. Study on the synergistic effect of Henna in enhancement of pathogenicity of Bacillus thuringiensis Berliner on third and fourth instars larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae). Archives of Phytopathology and Plant Protection, 47(12): 1497-1507.
-Göldel, B., Lemic, D. and Bažok, R., 2020. Alternatives to synthetic insecticides in the control of the Colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits. Agriculture, 10-611.
-Helson, B.V., Barry Lyons, D., Wanner, K.W. and Taylor, A.S., 2001. Control of conifer defoliators with neem-based systemic bioinsecticides using a novel injection device. The Canadian Entomologist, 133: 729-744.
-Hesketh, H. and Hails, R.S., 2015. Bacillus thuringiensis impacts on primary and secondary baculovirus transmission dynamics in Lepidoptera. Journal of Invertebrate Pathology, 132: 171-181.
-Hlasny, T., Trombik, J., Holuša, J., Lukášová, K., Grendár, M., Turčáni, M., Zúbrik, M., Tabaković-Tošić, M., Hirka, A., Buksha, I. and Modlinger, R., 2016. Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. Journal of Pest Science, 89: 413-425.
-Hosseinzadeh, A. and Aramideh, S., 2016. Toxicity of Bacillus thuringiensis var. kurstaki and Spinosad on three larval stages of beet armyworms Spodoptera exigua (Hübner) (Lep: Noctuidae). Journal of Entomology and Zoology Studies, 4(5): 375-379.
-Hwang, H.S., Acharya, R., Lucas, M.D.C., Sharma, S.R., Lee, Y.S. and Lee, K.Y., 2023. Effects of Lymantria dispar multiple nucleopolyhedrovirus and Bacillus thuringiensis var. kurstaki on different larval instars of Lymantria dispar asiatica. Archives of Insect Biochemistry and Physiology, 113(1): e22002.
-Karimzadeh Esfahani, J., 2014. Investigating the efficiency of the new insecticide Rui Agro (Matrine) in the control of cabbage moth. Agricultural Research, Education and Extension Organization, 20 (In Persian).
-Konecka, E., Kaznowski, A. and Tomkowiak, D., 2019. Insecticidal activity of mixtures of Bacillus thuringiensis crystals with plant oils of Sinapis alba and Azadirachta indica. Annals of Applied Biology, 174(3): 364- 371.
-Konecka, E., Kaznowski, A., Grzesiek, W., Nowicki, P., Czarniewska, E. and Baranek, J., 2020. Synergistic interaction between carvacrol and Bacillus thuringiensis crystalline proteins against Cydia pomonella and Spodoptera exigua. BioControl, 65: 447-460.
-Kouhjani Gorji, M., 2023. Investigation of the efficacy of three botanical insecticides, Neem Azal®, Ruy Agro®, and Bio1®, on the boxwood moth Cydalima perspectalis Walker (Lep.: Crambidae). Iranian Journal of Forest and Range Protection Research, 21(1): 187-199.
-Kryukov, V.Y., Khodyrev, V.P., Yaroslavtseva, O.N., Kamenova, A.S., Duisembekov, B.A. and Glupov, V.V., 2009. Synergistic action of entomopathogenic hyphomycetes and the bacteria Bacillus thuringiensis ssp. morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Applied Biochemistry and Microbiology, 45: 511-516.
-Kryukov, V.Y., Tomilova, O.G., Luzina, O.A., Yaroslavtseva, O.N., Akhanaev, Y.B., Tyurin, M.V., Duisembekov, B.A., Salakhutdinov, N.F. and Glupov, V.V., 2018. Effects of fluorine-containing usnic acid and fungus Beauveria bassiana on the survival and immune–physiological reactions of Colorado potato beetle larvae. Pest Management Science, 74: 598-606.
-Kumar, P., Poehling, H.M. and Borgemeister, C., 2005. Effects of different application methods of Azadirachtin against sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants. Journal of Applied Entomology, 129: 489-497.
-Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S., 2015. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132: 1-41.
-Lengai, G.M.W., Muthomi, J.W. and Mbega, E.R., 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7: 1-13.
-Lentini, A., Mannu, R., Cocco, A., Ruio, P.A., Carboneschi, A. and Luciano, P., 2019. Long-term monitoring and microbiological control programs against lepidopteran defoliators in Sardinian cork oak forests (Italy). Annals of Silvicultural Research, 45(1): 21-30.
-Liebhold, A. M., Elkinton, J. S., Zhou, C., Hohn, M. E., Rossi, R. E., Boettner, G. H., ... and McManus, M. L., 1995. Regional correlation of gypsy moth (Lepidoptera: Lymantriidae) defoliation with counts of egg masses, pupae, and male moths. Environmental Entomology, 24(2): 193-203.
-Mannu, R., Cocco, A., Luciano, P. and Lentini, A., 2020. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests. Pest Management Science, 76(3): 1103-1111.
-Martemyanov, V.V., Bykov, R.A., Demenkova, M., Gninenko, Y., Romancev, S., Bolonin, I., Mazunin, I., Belousova, I.A., Akhanaev, Y.B., Pavlushin, S.V., Krasnoperova, P. and Ilinsky, Y., 2019. Genetic evidence of broad spreading of Lymantria dispar in the West Siberian Plain. Plos One, 14(8): e0220954.
-Massaguni, R. and Latip, S.N.H.M., 2012. Neem crude extract as potential biopesticide for controlling golden apple snail, Pomacea canaliculata. In: Soundararajan, R. P., (Ed.). Advances in Chemical and Botanical Pesticides. In Tech, Rijeka, Croatia, 233-254.
-Medo, I. and Marcic, D., 2013. The effects of Kingbo biopesticide on Tetranychus urticae Koch female adults. Pesticides and Phytomedicine (Belgrade), 28: 195-202.
-Mhalla, D., Farhat-Touzri, D.B., Tounsi, S. and Trigui, M., 2018. Combinational effect of Rumex tingitanus (Polygonaceae) hexane extract and Bacillus thuringiensis δ-endotoxin against Spodoptera littoralis (Lepidoptera: Noctuidae). BioMed Research International, 1: 3895834.
-Mohamadi, D., Evazian Kari, N. and Sharifi Azar, Z., 2020. Enhancing Efficiency of Bacillus thuringiensis by Leaf Extract of Cupressus arizonica against Spodoptera exigua (Lep.: Noctuidae). Journal of Applied Research in Plant Protection, 9(1): 89-105.
-Moradi Afrapoli, F., Mohammadi Sharif, M., Barimani Varandi, H. and Shayanmehr, M., 2022. Susceptibility of Cydalima perspectalis (Lepidoptera: Crambidae) larvae to some reduced-risk insecticides in laboratory bioassays. Journal of Forest Science, 68(7): 253-262.
-Nikakhtar, S., Aramideh, S., Mirfakhraie, S. and Frouzan, M., 2022. Effect of three commercial formulations includes Nimbecidine, Neemazal T/S and Kofa from plant compound of neem on the biological stages of Trialeurodes vaporariorum (Hem.: Aleyrodidae) and its parasitoid, Encarsia formosa. Plant Pest Research, 12(1): 59-72.
-Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z. and Kamita, S. G., 2016. Individual and combined effects of Bacillus thuringiensis and Azadirachtin on Plodia interpunctella Hubner (Lepidopetra: Pyralidae). Journal of Insect Science, 16(1): 95.
-Ochieng, T.A., Akutse, K.S., Ajene, I.J., Kilalo, D.C., Muiru, M., and Khamis, F.M., 2024. Interactions between Bacillus thuringiensis and selected plant extracts for sustainable management of Phthorimaea absoluta. Scientific Reports, 14(1): 9299.
-Ojha, P.K., Kumari, R. and Chaudhary, R.S., 2017. Impact of certain bio-pesticides on larval mortality of Helicoverpa armigera Hübner (Noctuidae: Lepidoptera) in chickpea. Journal of Entomology and Zoology Studies, 5(2): 1083-1091.
-Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., Mcfield, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., van der Sluijs, J.P., van Dyck, H. and Wiemers, M., 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22: 68-102.
-Pisa, L., Goulson, D., Yang, E.C., Gibbons, D., Sanchez-Bayo, F., Mitchell, E., Aebi, A., van der Sluijs, J., MacQuarrie, C.J.K., Giorio, C., Long, E.Y., McField, M., van Lexmond, M.B. and Bonmatin, J.M., 2017. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 28: 1749-11797.
-Rahman, S., Biswas, S.K., Barman, N.C. and Ferdus, T., 2016. Plant extract as selective Pesticide for integrated pest management. Biotechnological Research, 2(1): 6-10.
-Robertson, J.L., Russell, R.M., Preisler, H.K. and Savin, N.E., 2007. Bioassays with arthropods. Boca Raton, CRC Press, 199p.
-Ruiu, L., Mannu, R., Falchi, G., Braggio, A. and Luciano, P., 2013. Evaluation of different Bacillus thuringiensis sv kurstaki formulations against Lymantria dispar and Malacosoma neustria larvae infesting Quercus suber trees. Redia, 96: 27-31.
-Ruiu, L., Ruiu, P.A. and Lentini, A., 2021. Comparative efficacy trials with two different Bacillus thuringiensis Serovar kurstaki strains against gypsy moth in mediterranean cork oak forests. Forests, 12(5): 602.
-Singh, G., Rup, P.J. and Koul, O., 2007. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lep.: Noctuidae) larvae. Bulletin of Entomological Research, 97(4): 351-357.
-Siqueira, H.A.A., Moellenbeck, D., Spencer, T. and Siegfried, B.D., 2004. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lep.: Crambidae) to Bacillus thuringiensis δ-endotoxins. Journal of Economic Entomology, 97: 1049-1057.
-Souto, A.L., Sylvestre, M., Tölke, E.D., Tavares, J.F., Barbosa-Filho, J.M. and Cebrián-Torrejón, G., 2021. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16): 4835.
-Tabashnik, B.E., Liu, Y.B., Unnithan, D.C., Carriere, Y., Dennehy, T.J. and Morin, S., 2004. Shared genetic basis of resistance to B.T. toxin Cry1Ac in independent strains of pink bollworm. Journal of Economic Entomology, 97: 721-726.
-Taheri Sarhozaki, M., Aramideh, S., Akbarian, J. and Pirsa, S., 2020. The effect of zinc oxide nanoparticles, kaolin powder and Beauveria bassiana (Balsamo) Vuillemin in combination with Neemarin® against Bemisia tabaci and pupae of Eretmocerus mundus under field conditions. Plant Protection (Scientific Journal of Agriculture), 43(3): 1-19.
-Tavakoli, M., Hosseini-Chegeni, A. and Khaghaninia, S., 2018. The first report of Gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae) outbreak from Northern Zagros forests and its identification using COI gene in Iran. Iranian Journal of Forest and Range Protection Research, 16(2): 207-218.
-Tiberi, R., Branco, M., Bracalini, M., Croci, F. and Panzavolta, T., 2016. Cork oak pests: a review of insect damage and management. Annals of Forest Science, 73: 219-232.
-Togbe, C.E., Zannou, E., Gbehounou, G. and Kossou, H.A., 2014. BBC: Biological based combinations- a concept way forward in sustainable pest management. International Journal of Tropical Insect Science, 34: 248-259.
-Woodward, S.L. and Quinn, J.A., 2011. Encyclopedia of invasive species: from Africanized honey bees to zebra mussels. Greenwood, California USA, 764p.
-Wu, J., Yu, X., Wang, X., Tang, L. and Ali, S., 2019. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, 10: 1812-1825.
-Xu, X., Yu, L. and Wu, Y., 2005. Disruption of a cadherin gene associated with resistance to Cry1Ac d-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71: 948-954.
-Yaroslavtseva, O.N., Dubovskiy, I.M., Khodyrev, V.P., Duisembekov, B.A., Kryukov, V.Y. and Glupov, V.V., 2017. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. Journal of Insect Physiology, 96: 14-20.
-Zanardi, O.Z., Ribeiro, L.P., Ansante, T.F., Santos, M.S., Bordini, G.P., Yamamoto, P.T. and Vendramim, J.D., 2015. Bioactivity of a Matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67: 160-167.