ارزیابی همزیستی برخی گونه‌های صنوبر با قارچ‌های آربسکولار و تأثیر همزیستی میکوریزی بر نهال‌های یکساله صنوبر تبریزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران

2 دانشیار پژوهش، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران

3 محقق، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، ترویج و آموزش کشاورزی، تهران، ایران

چکیده

سابقه و هدف: گونه‌های مختلف جنس صنوبر به‌دلیل رشد سریع، تولید زی‌توده بالا و سازگاری خوب با مناطق اقلیمی مختلف، گونه‌های درختی مهمی در برنامه‌های زراعت چوب هستند. از سوی دیگر، قارچ‌های میکوریز آربسکولار می‌توانند همزیستی خوبی با گونه‌های مختلف صنوبر برقرار کنند که در‌نتیجه این همزیستی متغیرهای رشد، تولید زی‌توده، جذب آب و عناصر غذایی و مقاومت صنوبرها نسبت به تنش‌های محیطی افزایش می‌یابد. بنابراین، بررسی فعل‌وانفعالات بین درختان صنوبر و جامعه میکروبی خاک، همچنین بررسی تأثیر همزیستی میکوریزی در مراحل اولیه رشد صنوبرها، می‌تواند زمینه‌ای برای تولید نهال‌های قوی‌تر و سالم‌تر با پیامدهای مطلوب احتمالی برای رشد آنها در سال‌های آینده را فراهم کند.
مواد و روش‌ها: در این مطالعه، ابتدا درصد کلونیزاسیون میکوریزی ریشه برخی گونه‌های صنوبر (موجود در کلکسیون تحقیقاتی صنوبر در ایستگاه تحقیقاتی البرز) با قارچ‌های میکوریز آربسکولار در شرایط طبیعی بررسی شد. با توجه به درصد بالای همزیستی میکوریزی صنوبر تبریزی- رقم سالاری و اهمیت این رقم به‌عنوان یک صنوبر پرمحصول در برنامه زراعت چوب مناطق خارج از شمال، قارچ‌های همزیست با این رقم صنوبر از طریق ویژگی‌های مورفولوژیکی اسپورهای موجود در خاک ریزوسفر شناسایی و قارچ‌های شناسایی‌شده برای تولید نهال‌های میکوریزی استفاده شد. در مرحله بعد، قلمه‌های این رقم صنوبر در گلدان‌های پرشده با خاکی با بافت لومی- رسی کاشته شدند. در زمان کاشت قلمه‌ها، مایه تلقیح میکوریزی در اطراف هر قلمه اضافه شد. پس از یک دوره رویش، زنده‌مانی و ویژگی‌های مورفوفیزیولوژیکی (متغیرهای رشد و تولید زی‌توده و متغیرهای فیزیولوژیکی برگ) و بیوشیمیایی (عناصر غذایی اصلی و کمیاب اندام‌های ریشه، ساقه و برگ) نهال‌های یکساله میکوریزی و غیرمیکوریزی صنوبر مقایسه و بررسی گردید.
نتایج و یافتهها: نتایج این مطالعه نشان داد، درصد کلونیزاسیون میکوریزی ریشه گونه و کلن‌های مختلف صنوبر با قارچ‌های میکوریز آربسکولار متفاوت و بیشترین درصد کلونیزاسیون میکوریزی ریشه مربوط به گونه‌های تبریزی- رقم سالاری (Populus nigra “62/154”) و پده (P. euphratica) و کمترین درصد مربوط به گونه P. deltoides “69/55” بود. در نمونه‌های جمع‌آوری‌شده از ناحیه ریزوسفر درختان صنوبر تبریزی- رقم سالاری، پنج گونه قارچ میکوریز آربسکولار شامل Glomus aggregatum،Diversispora tortuosa، Scutellospora heterogama،  Septoglomus constrictumو  Claroideoglomus luteumشناسایی شد. نتایج تجزیه‌و‌تحلیل آماری داده‌ها نشان داد، تیمار میکوریزی تأثیر مثبت معنی‌داری (01/0> P) بر متغیرهای رشد (قطر و طول ساقه)، تولید زی‌توده (زی‌توده خشک ریشه و اندام هوایی و زی‌توده خشک کل)، محتوای نسبی آب برگ و غلظت عناصر غذایی (نیتروژن، فسفر، پتاسیم، کلسیم، آهن، روی و مس) برخی اندام‌های گیاهی نهال‌های صنوبر داشت. همچنین، در نهال‌های میکوریزی صنوبر، افزایش معنی‌دار میزان پرولین، قندهای محلول و فعالیت آنزیم‌های آنتی‌اکسیدانی برگ نسبت به نهال‌های غیرمیکوریزی مشاهده شد.
نتیجه‌گیری: درصد بالای همزیستی میکوریزی گونه‌های مختلف صنوبر با قارچ‌های میکوریزی در شرایط طبیعی و تأثیر مثبت همزیستی میکوریزی بر نهال‌های یکساله صنوبر تبریزی نشان می‌دهد، با توجه به اهمیت نقش جوامع میکروبی خاک بر تغذیه، رشد و حفاظت گیاه در برابر تنش‌های محیطی، با بررسی فعل‌وانفعالات زیستی بین میکروارگانیسم‌های خاک و صنوبرها به‌ویژه در مراحل اولیه رشد، می‌توان برای تولید نهال‌های سالم و قوی در راستای برنامه‌های زراعت چوب بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of symbiosis of some poplar species with arbuscular fungi and mycorrhizal inoculation effects on one-year-old Populus nigra plants

نویسندگان [English]

  • Azadeh Salehi 1
  • Mohammad Matinizadeh 2
  • Elham Nouri 3
1 Assistant Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Associate Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3 Researcher, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Background and objectives: Poplars are important tree species in poplar plantations and agroforestry programs due to their fast growth, high biomass production, and ecological adaptation. On the other hand, arbuscular mycorrhizal fungi can have a good symbiosis with different poplar species. With this symbiosis, growth parameters, biomass production, absorption of water and nutrients, as well as the resistance of poplars to environmental stress, will be increased. Understanding the relationship between mycorrhizas and poplars and how mycorrhizas affect the growth and nutrition of such species may contribute to producing stronger and healthier plants and more sustainable practices in the future.
Methodology: In this study, first of all, the root mycorrhizal colonization percentage of some poplar species (available in the poplar research collection of Alborz Research Center) with arbuscular mycorrhizal fungi was investigated. Then, considering the high percentage of mycorrhizal symbiosis of Populus nigra “62/154” trees and the importance of this clone as a high-yielding poplar clone, widely used in poplar plantations in different parts of the country, symbiotic fungi with this clone were identified through the morphological properties of spores in the rhizosphere soil, and then the identified mycorrhizal fungi were used to produce mycorrhizal plants. Then, poplar cuttings were collected from the Alborz Research Center and planted in pots filled with clay-loam soil. The pots were kept outdoors during the experiment. At the time of planting, mycorrhizal inoculum was applied around each cutting. After that, under an experimental layout consisting of a completely randomized design, some morphophysiological (growth parameters, biomass production, and physiological parameters of leaves) and biochemical (macro and micro nutrients of root, stem, and leaf) responses of one-year-old mycorrhizal and non-mycorrhizal poplar plants were investigated.
Results: The results showed that the percentage of root mycorrhizal colonization of different poplar species was different. The highest percentage of root mycorrhizal colonization was observed in P. nigra “62/154” and P. euphratica, and the lowest percentage in P. deltoides “69/55”. In the soil samples collected from the rhizosphere of P. nigra “62/154”, five species of arbuscular mycorrhizal fungi, including Claroideoglomus luteum, Diversispora tortuosa, Glomus aggregatum, Septoglomus constrictum, and Scutellospora heterogama, were identified. The results demonstrated that mycorrhizal treatment had a significant positive effect (P < 0.01) on growth parameters (diameter and stem length), biomass production (root and shoot dry weight and total dry weight), relative water content of leaves, and nutrient concentrations (nitrogen, phosphorus, potassium, calcium, iron, zinc, and copper) of some plant tissues. Likewise, the content of proline and soluble sugars and the activity of antioxidant enzymes in leaves of mycorrhizal plants increased compared to non-mycorrhizal plants.
Conclusion: The high symbiosis percentage of different poplar species with arbuscular mycorrhizal fungi in natural conditions and the positive effect of mycorrhizal symbiosis on one-year-old poplar plants show that, considering the importance of the role of soil microbial communities in plant nutrition, growth, and protection against environmental stresses, investigating the biological interactions between soil microorganisms and poplars, especially in the early stages of growth, can be used to produce healthy and strong plants for poplar plantations.

کلیدواژه‌ها [English]

  • Growth
  • Mycorrhizal colonization
  • Nutrients
  • Physiological parameters
  • Allen, M.F., 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal, 6: 291-297.
  • Bates, I.S., Waldern, R.P. and Teare, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
  • Baum, and Makeshin, F., 2000. Effects of nitrogen and phosphorus fertilisation on mycorrhizal formation of two poplar clones (Populus trichocarpa and P. tremula x tremuloides). Journal of Plant Nutrition and Soil Science, 163: 491e7.
  • Beckers, B., De Beeck, M.O., Weyens, N., Boerjan, W. and Vangronsveld, J., 2017. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 5(1): 25.
  • Bennett, J.A. and Cahill Jr., J.F., 2016. Fungal effects on plant–plant interactions contribute to grassland plant abundances: evidence from the field. Journal of Ecology, 104: 755-764.
  • Bever, J.D., Mangan, S.A. and Alexander, H.M., 2015. Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics, 46: 305-325.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5): 464-465.
  • Bremner, J.M., 1996. Nitrogen-total: 1085-1121. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (Eds.). Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, 1390p.
  • Chance, B. and Maehly, A.C., 1955. Assay of catalase and peroxidase. Methods in Enzymology, 2: 764-775.
  • Chellappan, P., Anitha Christy, S.A. and Mahadevan, A., 2002. Multiplication of arbuscular mycorrhizal fungi on roots, In: Mukerji, K.G., Manoharachary, C., Chaloma, B.P., (eds), Techniques in mycorrhizal studies, Kluwer, Derdrecht, pp. 285-297.
  • Chifflot, V., Rivest, D., Olivier, A., Cogliastro, A. and Khasa, D., 2009. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agriculture, Ecosystems & Environment, 131: 32-39.
  • Ciadamidaro, L., Madejón, E., Robinson, B. and Madejón, P., 2014. Soil plant interactions of populus alba in contrasting environment. Journal of Environmental Management, 132: 329-337.
  • Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P. and Castiglione, S., 2010. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106: 791-802.
  • Dinus, R.J., Payne, P., Sewell, M.M., Chiang, V.L. and Tuskan, G.A., 2001. Genetic modification of short rotation popular wood: Properties for ethanol fuel and fiber productions. Critical Reviews in Plant Sciences, 20: 51-69.
  • Domiı́nguez, M.T., Madrid, F., Maranon, T. and Murillo, J.M., 2009. Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere, 76: 480-486.
  • Gehring, A., Mueller, R.C. and Whitham, T.G., 2006. Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia, 149: 158e64.
  • Gerdemann, J.W. and Nicolson, T.H., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2): 235-244.
  • Gigloie, A., Forghani, A., Kahneh, E. and Karimi, Gh.H., 2008. The Arbuscular mycorrhizal fungi status of some poplar clones in Guilan. Iranian Journal of Biology, 21(1): 278-288 (In Persian).
  • Gosling, P., Hodge, A., Goodlass, G. and Bending, G., 2006. Arbuscular Mycorrhizal Fungi and Organic Farming. Agriculture, Ecosystems & Environment, 113: 17-35.
  • Grace, E.J., Cotsaftis, O., Tester, M., Smith, F.A. and Smith, S.E., 2009. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonisation, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist, 181: 938-949.
  • Han, S., Cheng, Y., Wu, G., He, X. and Zhao, G., 2024. Enhancing salt tolerance in poplar seedlings through arbuscular mycorrhizal fungi symbiosis. Plants, 13(2): 233.
  • Hao, Z.P., Xie, W., Jiang, X.L., Wu, Z.X., Zhang, X. and Chen, B.D., 2019. Arbuscular mycorrhizal fungus improves Rhizobium-Glycyrrhiza seedling symbiosis under drought stress. Agronomy, 9(10): 572.
  • Hausmann, N.T. and Hawkes, C.V., 2010. Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology, 91: 2333-2343.
  • Henning, J.A., Weiher, E., Lee, T.D., Freund, D., Stefanski, A. and Bentivenga, S.P., 2018. Mycorrhizal fungal spore community structure in a manipulated prairie. Restoration Ecology, 26 (1): 124-133.
  • Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J.C.,Wilson, G.W.T., Klironomos, J.N. and Umbanhowar, J., 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13(3): 394-407.
  • Hooker, J.E., Munro, M. and Atkinson, D., 1992. Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant and Soil, 145: 207e14.
  • Hu, Y.B. and Chen, B.D., 2020. Arbuscular mycorrhiza induced putrescine degradation into gamma aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza, 30: 329-339.
  • Hu, Y.J., Wu, S.L., Sun, Y.Q., Li, T., Zhang, X., Chen, C.Y., Lin, G. and Chen, B.D., 2015. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula Mycorrhiza, 25(2): 131-142.
  • Irigoyen, J.J., Einerich, D.W. and Sanchez-Diaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84: 55-60.
  • Jansson, S. and Douglas, C.J., 2007. Populus: A model system for plant biology. Annual Review of Plant Biology, 58: 435-458.
  • Jiang, Y.N., Wang, W.X., Xie, Q.J., Liu, N., Liu, L.X., Wang, D.P., Zhang, X.W., Yang, C., Chen, X.Y., Tang, D.Z. and Wang, E.T., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356(6343): 1172-1175.
  • Jie, W., Liu, X. and Cai, B., 2013. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. PLoS One, 8(8): e72898.
  • Johnson, N.C., Graham, J.H. and Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135: 575-585.
  • Khasa, P.D., Chakravarty, P., Robertson, A., Thomas, B.R. and Dancik, B.P., 2002. The mycorrhizal status of selected poplar clones introduced in Alberta. Biomass Bioenergy, 22: 99-104.
  • Li, L., Zhang, Y.B., Luo, J.X., Korpelainen, H. and Li, C.Y., 2013. Sex-specific responses of Populus yunnanensis exposed to elevated CO2 and salinity. Physiologia Plantarum, 147: 477-488.
  • Liu, J., Zhao, W., Huo, Y., Cong, X., Tian, Y., Liu, Y., Zhu, W., Su, X., Zhang, W. and Ding Ch., 2024. Arbuscular mycorrhizal fungi communities vary between poplar species in the same habitat. Rhizosphere, 29: 100827.
  • Lu, Y., Wang, G., Meng, Q., Zhang, W. and Duan B., 2014. Growth and physiological responses to arbuscular mycorrhizal fungi and salt stress in dioecious plant Populus tomentosa. Canadian Journal of Forest Research, 44: 1020-1031.
  • Maherali, H., 2014. Is there an association between root architecture and mycorrhizal growth response? New Phytologist, 204(1): 192-200.
  • Matinizadeh, M., Nouri, E., Alizadeh, T. and Shirvany, A., 2022. Improving the survival, establishment and growth characteristics of Juniperus excelsa seedlings by inoculation of native mycorrhizal fungi. Forest and Wood Products, 74: 421-432 (In Persian).
  • Mcgonigles, T.P., Millers, M.H., Evans, D.G., Fairchild, G.L. and Swan, J.A., 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115(3): 495-501.
  • Mclean, E.O., 1982. Soil pH and lime requirement: 199-224. In: Page, A.L. (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, 1159p.
  • Mestre, M., Pastorino, M., Aparicio, A. and Fontenla, S., 2017. Natives helping foreigners? The effect of inoculation of poplar with patagonian beneficial microorganisms. Journal of Soil Science and Plant Nutrition, 17(4): 1028-1039.
  • Moradi behbahani, S., Moradi, M., Basiri, R. and Mirzaei, J., 2017. Arbuscular mycorrhizal fungi symbiosis with Populus euphratica Oliv in riparian forest and its correlation with soil physiochemical properties. Journal of Wood and Forest Science and Technology, 24(1): 17-28 (In Persian).
  • Nelson, D.W. and Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter: 961-1010. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E., (Eds.). Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America Inc., Madison, 961-1010.
  • Nouri, E., Matinizadeh, M., Moshki, A., Zolfaghari A., Rajaei, S. and Janoušková, M., 2020. Arbuscular mycorrhizal fungi benefit drought-stressed Salsola laricina. Plant Ecology, 221: 683-694.
  • Nouri, E., Moshki, A., Matinizadeh, M., Zolfaghari, A. and Rajaei, S., Symbiosis relationship between some arbuscular mycorrhizal fungi (AMF) and Salsola laricina and its effect on improving plant growth parameters. Rostaniha 19(2): 130-137 (In Persian).
  • Opik, M., Metsis, M., Daniell, T.J., Zobel, M. and Moora, M., 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 184: 424-437.
  • Ortas, I. and Akpinar, Ç., 2011. Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. Journal of Plant Nutrition, 34: 970-987.
  • Paradi, I., Bratek, Z. and Láng, F., 2003. Influence of arbuscular mycorrhiza and phosphorus supply on polymine content, growth and photosynthesis of Plantago lanceolata. Biologia Plantarum, 46: 563-569.
  • Phillips, J.M. and Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1): 158-161.
  • Polle, A. and Schützendübel, A., 2003. Heavy metal signalling in plants: linking cellular and organismic responses. In Plant responses to abiotic stresses. Topics in current genetics, Vol. 4. Edited by H. Hirt and K. Shinozaki. Springer, Berlin, Heidelberg, New York. pp. 167-215.
  • Read, D.J. and Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytologist, 157: 475-492.
  • Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B. and Walker, C., 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23(7): 515-531.
  • Regier, N., Streb, S., Cocozza, C., Schaub, M., Cherubini, P., Zeeman, S.C. and Frey, B., Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant, Cell & Environment, 32: 1724-1736.
  • Rhoades, J.D., 1982. Soluble salts: 167-179. In: Page, A.L. (Ed.). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, 1159p.
  • Robbert, R., Stewart, C., Derek, J. and Bewley, D., 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65: 245-248.
  • Rooney, D.C., Killham, K., Bending, G.D., Baggs, E., Weih, M. and Hodge, A., 2009. Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends in Plant Science, 14: 542-549.
  • Rooney, D.C., Prosser, J.I., Bending, G.D., Baggs, E.M., Killham, K. and Hodge, A., 2011. Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericanacv ghoy. Biomass and Bioenergy, 35: 4605–4612. 
  • Salehi, A. and Matinizadeh, M., 2017. Effect of symbiosis with arbuscular mycorrhizal fungi on phytoremediation processes in the soils contaminated with heavy metals. Iranian Journal of Biology, 1(1): 57-66 (In Persian).
  • Salehi, A., Calagari, M. and Ahmadloo, F., 2018. Effect of some soil properties on growth of three-year black poplar (Populus nigra L.) trees in poplar plantations in south of Tehran. Iranian Journal of Forest and Poplar Research, 26(3): 344-354 (In Persian).
  • Salehi, A., Calagari, M., Ahmadloo, F., Sayadi, M.H.J. and Tafazoli, M., 2022. Productivity of Populus nigra in two different soils over five rotations. Acta Ecologica Sinica, 42(4):332-337.
  • Sánchez, F.J., Manzanares, M., De Andres, E.F., Tenorio, J.L. and Ayerbe, L., 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59: 225-235.
  • Sanders, I.R., Alt, M., Groppe, K., Boller, T. and Wiemken, A., 1995. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytologist, 130: 419-427.
  • Siminis, C.I., Kanellis, A.K. and Roubelakis-Angelakis, K.A., 1994. Catalase is differentially expressed in dividing and nondividing protoplasts. Plant Physiology, 105(4): 1375-1383.
  • Sixto, H., Grau, J.M., Alba, N. and Alia, R., 2005. Response to sodium chloride in different species and clones of genus Populus Forestry, 78(1): 93-104.
  • Smith, S.E. and Read, , 1997. Mycorrhizal symbiosis, 2nd ed. London: Academic Press.
  • Smith, S.E. and Read, D.J., 2008. Arbuscular mycorrhizas. In: Smith, S.E., Read, D.J. (ed.): Mycorrhizal Symbiosis. pp. 31-134. Academic Press, New York.
  • Taylor, A., Pereira, N., Thomas, B., Pink, D.A.C., Jones, J.E. and Bending, G.D., 2015. Growth and nutritional responses to arbuscular mycorrhizal fungi are dependent on onion genotype and fungal species. Biology and Fertility of Soils, 51: 801-813.
  • Torrecillas, E., del Mar Alguacil, M. and Roldán, A., 2011. Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a Mediterranean, semiarid degraded area. Plant and Soil, 354: 97-106.
  • Van Der Heijden, M.G.A. and Horton, T.R., 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97: 1139-1150.
  • Wang, B. and Qiu, Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5): 299-363.
  • Wang, C., White, P.J. and Li, C., 2017. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Mycorrhiza, 27: 369-381.
  • Weremijewicz, J., da Silveira Lobo O’Reilly Sternberg, L. and Janos, D.P., 2016. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytologist, 212: 461-471.
  • Wu, N., Li, Z., Liu, H.G. and Tang, M., 2015. Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress. Acta Physiologiae Plantarum, 37: 1-14.
  • Wu, N., Li, Z., Wu, F. and Tang, M., 2016. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt. Scientific Reports, 6: 37663.
  • Xiao, X., Yang, F., Zhang, S., Korpelainen, H. and Li, C., Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiologia Plantarum, 136: 150-168.
  • Yang, H.S., Xu, J.L., Guo, Y., Koide, R.T., Dai, Y.J., Xu, M.M., Bian, L.P., Bian, X.M. and Zhang, Q., 2016. Predicting plant response to arbuscular mycorrhizas: the role of host functional traits. Fungal Ecology, 20: 79 -83.
  • Yang, H.S., Zhang, Q., Dai, Y.J., Liu, Q., Tang, J.J., Bian, X.M. and Chen, X., 2015. Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant and Soil, 389(1–2): 361-374.
  • Yin, R., Hao, Z., Yuan, X., Wang, M., Li, S., Zhang, X. and Chen, B., 2023. Arbuscular mycorrhizal symbiosis alleviates ozone injury in ozone-tolerant poplar clone but not in ozone-sensitive poplar clone. Science of the Total Environment, 894: 165023.
  • Zhang, S., Luo, P., Yang, J., Irfan, M., Dai, J., An, N., Li, N. and Han, X., 2021. Responses of arbuscular mycorrhizal fungi diversity and community to 41-year rotation fertilization in brown soil region of Northeast China. Frontiers in Microbiology, 12: 742651.
  • Zhang, X., Chen, B.D. and Ohtomo, R., 2015. Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition, 61(2): 359-368.
  • Zhang, Y.H., Tian, Y., Ding, S.H., Lv, Y., Samjhana, W. and Fang, S.Z., 2020. Growth, carbon storage, and optimal rotation in poplar plantations: a case study on clone and planting spacing effects. Forests, 11: 842.
  • Zhang, Z., Zhang, J. and Huang, Y., 2014. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New Forests, 45: 545-556.