بررسی رابطه زمانی و مکانی تغییر پارامترهای اقلیمی و آتش‌سوزی در جنگل‌ها و مراتع استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش، بخش تحقیقات جنگل، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران،‌ ایران

2 استادیار پژوهش، بخش تحقیقات صنوبر، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ‌ایران

3 استاد، بخش علوم خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ‌ایران

4 کارشناس ارشد، رییس گروه گیاهپزشکی، دفتر حفاظت و حمایت، سازمان منابع طبیعی و آبخیزداری کشور، تهران، ایران

5 کارشناس ارشد، رییس گروه توسعه هواشناسی کاربردی، اداره کل هواشناسی استان کهگیلویه و بویراحمد، یاسوج، ایران

10.22092/ijfrpr.2023.361993.1577

چکیده

آتش‌سوزی یکی از پدیده‌های مخرب عرصه‌های طبیعی است که طی سال‌های اخیر بخش وسیعی از جنگل‌ها و مراتع استان گیلان را نابود کرده است. این پژوهش به‌منظور بررسی رابطه زمانی و مکانی بین متغیرهای اقلیمی و آتش‌سوزی در استان گیلان انجام شد. متغیرهای آتش‌سوزی شامل تعداد و وسعت آتش‌سوزی‌ها و متغیرهای اقلیمی شامل هفت متغیر طی 26 سال اخیر بودند. برای بررسی رابطه زمانی بین آتش‌سوزی‌ها و متغیرهای اقلیمی، از همبستگی پیرسون و روابط رگرسیونی استفاده ‌شد. برای بررسی رابطه مکانی بین وقوع آتش‌سوزی‌ها و متغیرهای اقلیمی‌‌، از روش‌های یادگیری ماشین استفاده ‌شد. نقشه آتش‌سوزی‌ها در جنگل‌ها و مراتع استان، از اداره ‌کل منابع طبیعی و آبخیزداری استان گیلان (1400-1375) و سنجنده مادیس (1400-1381) تهیه شد. نقشه متغیرهای اقلیمی با روش‌های درون‌یابی در GIS تهیه شدند. اهمیت نسبی متغیرهای اقلیمی در وقوع آتش‌سوزی با آماره‌های میانگین کاهش جینی (Mean Decrease Gini: MDG) و میانگین کاهش صحت (Mean Decrease Accuracy: MDA) تعیین ‌شد. برای مدل‌سازی و تهیه نقشه‌های احتمال وقوع آتش‌سوزی، از 70 درصد موقعیت آتش‌سوزی‌ها و مدل‌های مختلف یادگیری ماشین (رگرسیون لجستیک، جنگل‌تصادفی، ماشین‌بردار پشتیبان و مدل ترکیبی SVM-RF) در نرم‌افزار زبان برنامه‌نویسی R استفاده شد. برای صحت‌سنجی مدل‌ها، از 30 درصد موقعیت آتش‌سوزی‌ها و مشخصه AUC استفاده شد. نتایج رابطه زمانی نشان داد، طی دوره 26 ساله، بین تعداد آتش‌سوزی و میانگین بارندگی فصلی به‌صورت منفی و بین تعداد آتش‌سوزی و میانگین سرعت باد فصلی و میانگین حداکثر سرعت باد فصلی به‌صورت مثبت، رابطه معنی‌داری در سطح اطمینان 95 درصد وجود داشت. به‌علاوه، بین وسعت آتش‌سوزی و میانگین بارندگی فصلی، رابطه معنی‌دار منفی در سطح اطمینان 95 درصد مشاهده شد. نتایج رابطه مکانی نشان داد، میانگین حداکثر درجه ‌حرارت فصلی، میانگین بارندگی فصلی و میانگین رطوبت نسبی فصلی بیشترین اهمیت را در وقوع آتش‌سوزی استان گیلان در گستره مکانی داشته‌اند. نتایج اعتبارسنجی نقشه‌های احتمال وقوع آتش‌سوزی نشان داد، مدل جنگل ‌تصادفی (AUC: 0/82) و مدل ترکیبی SVM-RF (AUC: 0/79) دقت بیشتری در نقشه‌برداری احتمال وقوع آتش‌سوزی داشته‌اند. بنابراین پیش‌بینی آتش‌سوزی‌های ناشی از عوامل اقلیمی در جنگل‌ها و مراتع استان گیلان با استفاده از نقشه‌های مذکور امکان‌پذیر است که کمک شایانی به مدیران منابع طبیعی در انجام اقدامات حفاظتی در مناطق پرخطر می‌کند. در این مورد، ضروری است که اقدامات کنترلی برای پیشگیری از وقوع آتش‌سوزی‌های آینده در مناطق پرخطر آتش‌سوزی، با حساسیت بیشتری توسط یگان حفاظت اداره‌ کل منابع طبیعی و آبخیزداری استان انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

Temporal and Spatial Analysis of the Relationship Between Climate Parameter Changes and Fire in the Forests and Rangelands in the Province of Gilan

نویسندگان [English]

  • Saeedeh Eskandari 1
  • Fatemeh Ahmadloo 2
  • Hamid Reza Pourghasemi 3
  • Yazdanfar Ahangaran 4
  • Zolfaghar Rezapour 5
1 Assistant Prof., Forest Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
2 Assistant Prof., Poplar Research Division, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
3 Prof., Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran.
4 Senior expert, Head of Plant Pathology Group, Protection and Conservation Office, Natural Resources and Watershed Organization of Iran, Tehran, Iran
5 Senior expert, Head of Applied Meteorology Development Group, Kohgiluyeh and Boyer Ahmad Meteorological Administration, Yasouj, Iran.
چکیده [English]

Fire is one of the destructive phenomena that have devastated a significant portion of forests and grasslands in Gilan Province in recent years. This study aimed to investigate the temporal and spatial relationship between climatic variables and wildfires in Gilan Province. The wildfire variables included the number and extent of wildfires, and the climatic variables consisted of seven parameters over the past 26 years (2001-2026). Pearson correlation and regression analysis were utilized to examine the temporal relationship. The relative importance of climatic variables in wildfire occurrence was determined using Mean Decrease Gini (MDG) and Mean Decrease Accuracy (MDA) statistics. For modeling and generating probability maps of wildfire occurrence, 70% of wildfire locations and various machine learning models (Logistic Regression, Random Forest, Support Vector Machine, and SVM-RF Hybrid) were employed using the R programming language. Model validation was conducted using 30% of wildfire locations and the Area Under the Curve (AUC) metric. The temporal results showed that during the 26-year period (2001-2026), a significant negative correlation was observed between the number of wildfires and the average seasonal precipitation, while positive correlations were found between the number of wildfires and the average seasonal wind speed and maximum wind speed at a 95% confidence level. Furthermore, a significant negative correlation was observed between the extent of wildfires and the average seasonal precipitation at a 95% confidence level. The spatial relationship analysis indicated that the average maximum temperature, average seasonal precipitation, and average relative humidity had the highest importance in wildfire occurrence within the geographical extent of Gilan Province. Model validation results revealed that the Random Forest model (AUC: 0.82) and the SVM-RF Hybrid model (AUC: 0.79) outperformed others in predicting the occurrence of wildfires. Therefore, predicting wildfires resulting from climatic factors in the forests and grasslands of Gilan Province using the aforementioned maps is feasible and can significantly aid natural resource managers in implementing protective measures in high-risk wildfire areas. Hence, it is imperative that proactive measures be taken by the Natural Resources and Watershed Management Organization of the province to prevent future wildfires with greater sensitivity.

کلیدواژه‌ها [English]

  • Climatic variables
  • number and area of fire
  • fire spatial and temporal analysis
  • linear regression
  • machine learning models
- Arabameri, A., Pradhan, B. and Rezaei, K., 2019. Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models. Geosciences Journal, 23(4): 669-686.
- Azizi, Gh. and Yousefi, Y., 2009. Warm wind and forest fire in Mazandaran and Gilan provinces (example: fire on 25-30 December of 2005). Geographical Researches, 24(1): 3-28.
- Azizi, Gh., Borzou, F. and Alijani, B., 2012. Observational analysis of fires in the northern forests of Iran, a case study: Golestan and Gilan provinces. The Journal of Spatial Planning, 16(3): 79-98.
- Bihamta, M. and Zare Chahooki, M., 2015. Principles of Statistics in Natural Resource Sciences Statistics. Tehran University Press, Tehran, 300p. (In Persian)
- Breiman, L. and Cutler, A., 2022. Random forest for classification and regression. UTC, 29p.
- Chen, F., Niu, Sh., Tong, X., Zhao, J., Sun, Y. and He, T., 2014. The impact of precipitation regimes on forest fires in Yunnan Province, Southwest China. The Scientific World Journal, 2014: 1-9.
- Chou, Y.H., 1992. Management of wildfires with a geographical information system. International Journal of Geographical Information Systems, 6: 123-140.
- Egan, J.P., 1975. Signal detection theory and ROC-analysis (Academic Press Series in Cognition and Perception). Academic Press, New York, 277p.
- Eshaghi Rad, J., Seyyedi, N. and Hasanzad Navrodi, I., 2009. Effect of single selection method on woody species diversity (case study: Janbe sara district-Guilan). Iranian Journal of Forest, 1(4): 277-285 (In Persian).
- Eskandari, S. and Chuvieco, E., 2015. Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 42: 57-64.
- Eskandari, S. and Jalilvand, H., 2017. Effect of weather changes on fire regime of Neka and Behshahr forests. Iranian Journal of Forest and Range Protection Research, 15(1): 30-39 (In Persian).
- Eskandari, S., Oladi, J., Jalilvand, H. and Saradjian, M.R., 2013. Role of human factors on fire occurrence in District Three of Neka Zalemroud forests-Iran. World Applied Sciences Journal, 27(9): 1146-1150.
- Eskandari, S., Oladi, J., Jalilvand, H. and Saradjian, M.R., 2015. Evaluation of the MODIS fire-detection product in Neka-Zalemroud fire-prone forests in Northern Iran. Polish Journal of Environmental Studies. 24(5): 2305-2308.
- Flannigan, M., 2013. Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294: 54-61.
- Flannigan, M.D., Stock, B.J. and Wotton, B.M., 2000. Climate change and forest fires. The Science of the Total Environment, 262: 221-229.
- Ghorbanzadeh, O., Valizadeh Kamran, Kh., Blaschke, Th., Aryal, J., Naboureh, A., Einali, J. and Bian, J., 2019. Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches. Fire, 2(3): 43.
- Gilan Natural Resources Administration (GNRA), 2019. Statistics and data of fire in Mazandaran province. Protection Unit of GNRA, Sari, 120p (In Persian).
- Golkarian, A., Naghibi, S.A., Kalantar, B. and Pradhan, B., 2018. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environmental Monitoring and Assessment, 190(3): 149.
- Guo, F., Su, Zh., Tigabu, M., Yang, X., Lin, F., Liang, H. and Wang, G., 2017. Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China. Forests, 8(180): 1-18.
- Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J. and Bowman, D.M.J.S., 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communication, 6(7537): 1-11.
- Kordestani, M.D., Naghibi, S.A., Hashemi, H., Ahmadi, K., Kalantar, B. and Pradhan, B., 2019. Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeology Journal, 27(1): 211-224.
- Koutsias, N. and Karteris, M., 1998. Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping. International Journal of Remote Sensing, 19: 3499-3514.
- Leuenberger, M., Kanevski, M. and Vega Orozco, C.D., 2013. Forest Fires in a Random Forest. Geophysical Research Abstracts, EGU General Assembly, 15: 32-38.
- Martínez, J., Vega-Garcia, C. and Chuvieco, E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90: 1241-1252.
- Mas, J.F., Filho, B.S.S., Pontius, R.G. and Farfan, M., 2013. A Suite of Tools for ROC Analysis of Spatial Models. International Journal of Geo-Information, 2(3): 869-888.
- Meyn, A., White, P.S., Buhk, C. and Jentsch, A., 2007. Environmental drivers of large, infrequent wildfires: the emerging conceptual model. Progress in Physical Geography, 31(3): 287-312.
- Pourhashemi, M., Eskandari, S., Dehghani, M., Najafi, T., Asadi, A. and Panahi, P., 2012. Biomass and leaf area index of Caucasian Hackberry (Celtis caucasica Willd.) in Taileh urban forest, Sanandaj, Iran. Iranian Journal of Forest and Poplar Research, 19(4): 609-620.
- R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed: http://www.R-project.org/.
- Rahimi, D. and Khademi, S., 2018. Analysis Synoptic Patterns for Forest Fires Risk in Northern of Iran. Journal of Natural Environmental Hazards, 7(17): 19-36 (In Persian).
- Razavi-Termeh, S.V., Sadeghi-Niaraki, A. and Choi, S.M., 2019. Groundwater potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water, 11(8): 1596.
- Roman, M.V., Azqueta, D. and Rodrigues, M., 2013. Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. Forest Ecology and Management, 294: 158-165.
- Smith, M.J., Goodchild, M.F. and Longley, P.A., 2007. Geospatial analysis-a comprehensive guide to principles, techniques and software tools. Troubador Publishing Ltd, Leicester, 516p.
- Song, Ch., Kwan, M., Song, W. and Zhu, J., 2017. A Comparison between Spatial Econometric Models and Random Forest for Modeling Fire Occurrence. Susceptibility, 9(819): 1-21.
- Syphard, A.D., Radeloff, V.C., Keuler, N.S., Taylor, R.S., Hawbaker, T.J., Stewart, S.I. and Clayton, M.K., 2008. International Journal of Wildland Fire, 17: 602-613.
- Tošić, I., Mladjan, D., Gavrilov, M.B., Živanović, S., Radaković, M.G., Putniković, S., Petrović, P., Krstić Mistridželović, I. and Marković, S.B., 2019. Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000-2017. Open Geosciences, 11: 414-425.
- Turco, M., Llasat, M.C., Hardenberg, J.V. and Provenzale, A., 2013. Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula). Climatic Change, 116: 665-678.
- Tymstra, C., Flannigan, M.D., Armitage, O.B. and Logan, K., 2007. Impact of climate change on area burned in Alberta’s boreal forest. International Journal of Wildland Fire, 16: 153-160.
- Urrutia-Jalabert, R., Gonzalez, M.E., Gonzalez-Reyes, A., Lara, A. and Garreaud, R., 2018. Climate variability and forest fires in central and south-central Chile. Ecosphere, 9(4): 1-18.
- Yesilnacar, E.K., 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D. thesis, Department of Geomatics, University of Melbourne, Melbourne, Australia.
- Zumbrunnen, T., Pezzattic, G.B., Menéndezd, P., Bugmann, H., Bürgia, M. and Conederac, M., 2011. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 261(12): 2188-2199.