بررسی و پیش‌بینی وضعیت خشک‌سالی در مناطق زاگرسی بر اساس شاخص‌های سنجش‌ازدور و مدل‌های گردش عمومی جو در دوره 20 ساله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع‌طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، پژوهشکده حفاظت خاک و آبخیزداری سازمان تحقیقات و آموزش و ترویج کشاورزی، تهران، ایران

3 استادیار سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع‌طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22092/ijfrpr.2023.359734.1548

چکیده

خشک‌سالی در زاگرس که یکی از مهم‌ترین اکوسیستم‌های ایران می‌باشد چالشی بزرگ است. سنجش از دور در پایش و مدیریت منابع طبیعی کاربردی کم‌نظیر دارد. هدف این مطالعه بررسی و تحلیل وضعیت خشکسالی در زاگرس میانی و جنوبی براساس مدل های گردش عمومی جو و شبکه عصبی در ارتباط با شاخص های سنجش دوریNDVI ، VCI، TCI ، VHI ، DDI ، EVI ، NDWI و SAVI می باشد. برای بررسی روند خشکسالی و پیش بینی آن از تصاویر سری زمانی ماهواره مودیس در دوره زمانی 20 ساله استفاده شد. نخست شاخص های مذکور از محصولات MOD021KM سنجنده Terra طی سالهای2000 تا 2019 تولید شدند و به کمک مدل های آماری– دینامیکی MP5 تحت سناریوهای RCP 2.6، RCP 4.5 و RCP 8.5 طی دوره 2020 تا 2039 و شبکه عصبی و شاخص های سنجش از دوری میزان بارش برآورد شد. وضعیت خشکسالی به صورت 2 دوره، بر اساس روش SPI برای 20 سال وضعیت موجود (2019 – 2000) و بر اساس سناریوهای RCP و روش های سنجش از دور و شبکه های عصبی برای 20 سال آینده (2039 – 2020) مورد بررسی قرار گرفت. نتایج حاکی از ترسالی شدید و بسیار شدید در دوره 2019 – 2000 و دوره ی 20 سال آینده در نواحی مرتفع منطقه می‌باشد. همچنین تحلیل فضایی و پیش‌بینی خشکسالی ها نشان دهنده الگوی نامنظمی در همه ی شاخص ها بوده و تنها در شاخص های NDVI و SAVI تحلیل فضایی خشکسالی ها توانسته است الگوی نسبتاً منظمی را ارائه کند

کلیدواژه‌ها


عنوان مقاله [English]

Investigation and forecasting of the drought situation in the Zagros region based on remote sensing indicators and general circulation models of the 20-year period

نویسندگان [English]

  • Salar Mirzapour 1
  • Mir Masoud Kheirkhah Zarkash 2
  • Zahra Azizi 3
1 PhD Student, Department of Remote Sensing and GIS, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Associate prof., Soil Conservation and Watershed Management Research Institute, Agriculture Research Education and Extention Organization (AREEO), Tehran, Iran
3 Assistant prof., Department of Remote Sensing and GIS, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Drought in Zagros, which is one of the most important ecosystems in Iran, is a big challenge. Remote sensing has a unique application in diagnosis, monitoring and management of natural resources. The purpose of this study is to investigate and analyze the drought situation in the middle and southern Zagros basin based on atmospheric general circulation models and neural network in relation to remote sensing indices NDVI, VCI, TCI, VHI, DDI, EVI, NDWI and SAVI. At first the Modis satellite time series images were used in a 20-year period. First the mentioned indicators were produced from MOD021KM products of Terra sensor from 2000 to 2019. Then amount of precipitation were estimated by using of statistical-dynamic model MP5 under RCP 2.6, RCP 4.5 and RCP 8.5 scenarios and neural network and Remote sensing indicators during the period from 2020 to 2039, And then the state of droughts was investigated in 2 periods of 20 years based on the SPI method (2000-2019) and based on RCP scenarios and remote sensing methods and neural networks for the next 20 years (2021-2039). The results showed that both in the period of 2000-2019 and 2020-2039, the high areas of the studied area have and will have severe and very severe wet year. Also, the spatial analysis of droughts and remote sensing indices of the second period has depicted an irregular pattern in all indices, and only in NDVI and SAVI indices, the spatial analysis of droughts has been able to present a relatively regular pattern

کلیدواژه‌ها [English]

  • Dynamic statistical model
  • Drought
  • Atmospheric general circulation model
  • Remote sensing indicators
  • Zagros
-Ahmadian, M., Mantsari, M., 2021. Evaluation of general circulation models and their ranking for hydrological simulation. Science of water and soil. Science of Agriculture, 31(4): 69-84. Available: https://www.sid.ir/fa/journal/ViewPaper.aspx?id=595105. (In Persian)
-Alijani, B., 2008. Effect of the Zagros mountains on the spatial distribution of precipitation. Journal of Mountain Science, 5(3): 218-231.
-Alirezaee, Z., Gandomkar, A., Khodagholi, M. and Abasi, A.R., 2019. Spatiotemporal dynamics of oak forest of Zagros in responce to drought case study: Oak forest of Lorestan. Iranian Journal of Forest and Range Protection Research, 17(1): 107-123.
-Alley, W.M., 1984. The Palmer drought severity index: limitations and assumptions. Journal of Applied Meteorology and Climatology, 23(7): 1100-1109.
-Atarod, P., Sadeghi, S., Taheri Sarteshnizi, F., Saroyi, S., Abbasian, P., Masihpour, M., Kurdestami, F., Darikondi, A., 2014. Effects of climatic factors and evapotranspiration on deterioration of central Zagros forests in Lorestan province. Research on Support and Protection of Forests and Pastures of Iran, 13(2): 97-112. Available: https://www.sid.ir/fa/journal/ViewPaper.aspx?id=282791.
-Agnew, C.T., 2000. Using the SPI to identify drought (In Persian).
-Baguskas, S.A., Peterson, S.H., Bookhagen, B. and Still, C.J., 2014. Evaluating spatial patterns of drought-induced tree mortality in a coastal California pine forest. Forest Ecology and Management, 315: 43-53.
-Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G. and Sutera, A., 2003. Spatial variability of drought: an analysis of the SPI in Sicily. Water Resources Management, 17(4): 273-296.
-Chen, Y.N., Zilliacus, H., Li, W.H., Zhang, H.F. and Chen, Y.P., 2006. Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China. Journal of Arid Environments, 66(2): 231-246.
-Demirel, M.C. and Moradkhani, H., 2016. Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing. Climatic Change, 135(2): 357-372.
-Farajzadeh, M., 2005. Drought from consept to solutions. National Geographical Organization Publication, Tehran (In Persian).
-Foster, D.R., Knight, D.H. and Franklin, J.F., 1998. Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1(6): 497-510.
-Goodarzi, M., Pourhashemi, M. and Azizi, Z., 2019. Investigation on Zagros forests cover changes under the recent droughts using satellite imagery. Journal of Forest Science, 65(1): 9-17.
-Hamzehpour, M., Kia-daliri, H. and Bordbar, K., 2011. Preliminary study of manna oak (Quercus brantii Lindl.) tree decline in Dashte-Barm of Kazeroon, Fars province. Iranian Journal of Forest and Poplar Research, 19(2): 363-352.
-Hejazizadeh, Z. and Javizadeh, S., 2010. Introduction to drought and its indexes.
-Hejazi zadeh, A., Fatahi, A., Ghaemi, H., 2003. Drought monitoring using standardized precipitation index, Case study of Chaharmahal Bakhtiari province. Geography Science, 23-45 (In Persian).
-IPCC, 2017. 46th Session of the IPCC – Decisions Adopted by the Panel, 6–10 September 2017, Montreal, Canada.
-Jia, L., Li, J. and Menenti, M., 2009, April. Drought monitoring and prediction by time series analysis of greenness and thermal anomalies at large scale. In EGU General Assembly Conference Abstracts (p. 9659).
-Karimi, M. Kaki, S and Rafati, S. 2018. Iran's future climate conditions and risks in climate research. Spatial Analysis of Environmental Hazards, 5(3): 1-22 (In Persian).
-Lloyd‐Hughes, B. and Saunders, M.A., 2002. A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(13): 1571-1592.
-Lu, J., Jia, L. and Zhou, J., 2015, December. Characterization of 2014 summer drought over Henan province using remotely sensed data. International Conference on Intelligent Earth Observing and Applications, 9808: 308-316.
-McKee, T.B., Doesken, N.J. and Kleist, J., 1993, January. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22): 179-183.
-McKee, T.B., 1995. Drought monitoring with multiple time scales. Proceedings of 9th Conference on Applied Climatology, Boston.
-Moghaddasi, M., Morid, S., Ghaemi, H. and Samani, J.M.V., 2005. Daily drought monitoring, Tehran province. Iranian Journal of Agricultural Science, 36(1): 51-62 (In Persian).
-Moran, E., Brondizio, E., Mausel, P. and Lu, D., 2004. Change Detection Techniques. International Journal of Remote Sensing, 25(12): 2365-2407.
-Mosaeadi and Qobaei Souq, 2011. Modification of Standardized Precipitation Index (SPI) Based on Relevant Probability Distribution Function. Water and Soil, 25(5). (In Persian with English summary).
-Ord, J.K. and Getis, A., 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis, 27(4): 286-306.
-Pardel, Ebrahimi, Attaullah and Azizi, 2017. Evaluating of the most suitable vegetation indices of estimating of canopy cover and above-ground phytomass in arid rangelands during different growth periods. Khokhbom, 7(2): 57-71 (In Persian with English summary).
-Pourkhosrwani Mohsen, Mehrabi Ali and Mousavi Seyedhjat, Drought spatial analysis of sirjan basin using remote sensing.
-Roshan, G., Mohammadnejad, V. and Vahid, 2013. Prediction of hydrological changes in the water level of Lake Urmia with an approach to different hypothetical plans of global warming in the coming decades. Quantitative Geomorphology Research, 1(3): 69-88 (In Persian).
-Stephenson, N.L., 1990. Climatic control of vegetation distribution: the role of the water balance. The American Naturalist, 135(5): 649-670.
-Turner, M.G., Baker, W.L., Peterson, C.J. and Peet, R.K., 1998. Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems, 1(6): 511-523.
-Tsakiris, G. and Vangelis, H., 2004. Towards a drought watch system based on spatial SPI. Water Resources Management, 18(1): 1-12.
-Van Lanen, H.A., Wanders, N., Tallaksen, L.M. and Van Loon, A.F., 2013. Hydrological drought across the world: impact of climate and physical catchment structure. Hydrology and Earth System Sciences, 17(5): 1715-1732.
-YoosefDoost, A., YoosefDoost, I., Asghari, H. and Sadeghian, M.S., 2018. Comparison of HadCM3, CSIRO Mk3 and GFDL CM2. 1 in prediction the climate change in Taleghan River Basin. American Journal of Civil Engineering and Architecture, 6(3): 93-100.