شبیه‌سازی رفتار آتش با استفاده از مدل آتش FlamMap در برنامه Arcfuels (مطالعه موردی جنگل‌کاری‌های تخسَم در استان گیلان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی،رشت، ایران

2 استادیار، گروه جنگلداری، دانشکده منابع طبیعی دانشگاه گیلان، صومعه‏ سرا، ایران

3 استاد، گروه جنگلداری، دانشکده منابع طبیعی دانشگاه گیلان، صومعه‏ سرا، ایران

4 دانشیار، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

با شناسایی مدل‌های سوخت و به دنبال آن شناخت رفتار آتش می‌توان اسباب لازم را در مدیریت مهار و کنترل آتش فراهم کرد. هدف از این تحقیق، بررسی رفتار آتش در جنگل‌کاری‌های کاج تدا در روستای تخسَم در استان گیلان بود که به‌وسیله مدل آتش FlamMap از برنامه Arcfuels ارزیابی شد. مواد سوختنی از خط نمونه Brown و از روش FLM و با استفاده از نمونه‌هایی که به شکل تصادفی منظم انتخاب شدند، برآورد شد. فایل سیمای منظر با استفاده از نقشه‌های شیب، جهت، ارتفاع، مدل سوخت و تاج‌پوشش ساخته شد. سپس لایه رطوبت سوخت محاسبه شده و لایه‌های آب وهوا و باد تهیه شده از ایستگاه سینوپتیک شهرستان رشت به مدل آتش معرفی شدند. با انتخاب لکه آتش‌سوزی، گستره آتش و بعضی دیگر از نقشه‌های رفتار آتش توسط مدل آتش، شبیه‌سازی شد. نتایج نشان داد که مدل FlamMap با بیش‌برآورد 35/1 هکتار و کم‌برآورد 54/0 هکتار و با ضریب کاپا 83/0 از اعتبار بالایی در ارزیابی آتش‌سوزی منطقه مورد پژوهش برخوردار بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Fire behavior simulation using the FlamMapfire modeling in ArcFuels program (Case study: Pinustaeda forestation in Takhsam, Gilan province)

نویسندگان [English]

  • M. Amin Amlashi 1
  • M. Ghodskha 2
  • A. Islam Bonyad 3
  • H. Porbabaei 3
  • M. Jafari 4
  • V. Gholami 2
1
2
3
4
چکیده [English]

Identification of the fuel models and subsequent recognition of the fire behavior can provide necessary tools for fire management and control. This study set out to identify the fire behavior in the loblolly pine plantations at Takhsam village in Gilan province that was evaluated by FlamMap model from ArcFuels program in the ArcGIS. Fuel materials were estimated by line sampling of Brown and the fuel load method (FLM), chosen by systematic random sampling. Landscape file (LCP) was made by maps of slope, aspect, elevation, fuel model and canopy. Then fuel moisture layer was calculated and weather as well as wind layers from Rasht synoptic station were introduced in the fire model. With selection of fire spot, fire spreading and some of the fire behavior maps were simulated by the fire model. The results showed that FlamMapmodel with overestimated and underestimated areas of 1.35 and 0.54 ha, respectively, and kappa coefficient of 0.83 has high validity in evaluation of wildfire in this state.

کلیدواژه‌ها [English]

  • Fire behavior
  • Fire model
  • Fuel model
  • Gilan Province
- Ager, A.A., Vaillant, N.M., Finney, M.A. and Preisler, H.K., 2012. Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape. Forest Ecology and Management, 267: 271–283.
- Ager, A.A., Finney, M.A., Kerns, B.K. and Maffei, H., 2007. Modeling wildfire risk to northern spotted owl (Strix occidentalis Caurina) habitat in central Oregon, USA, Forest Ecology and Management 246: 45–56.
- Anderson, H.E, 1982. Aids to determining fuel models for estimating fire behavior. Intermountain Forest and Range Experiment Station Ogden, UT 84401 General Technical Report INT-122 28p.
- Andrews, P.L., (2009), The Behaveplus fire modeling system, version 5.0: variables General Technical Report RMRS-GTR-213WWW Revised. Fort Collins, CO: USDA Forest Service, Rocky Mountain Research Station, Related Record(s) on FRAMES, 111p.  
- Beyers, J.L., Brown, J.K., Busse, M.D., DeBano, L.F., Elliot, W.J., Folliott, P.F., Jacoby, G.R., Knoepp, J.D., Landsberg, J.D., Neary, D.G., Reardon, J.R., Rinne, J.N., Robichaud, P.R., Ryan, K.C., Tiedemann, A.R. and Zwolinski, M.J., 2005. Wild land fire in ecosystems effects of fire on soil and water. United States Department of Agriculture Forest Service Rocky Mountain Research Station General Technical, 250p.
- Brown, J.K., 1974. Handbook for inventorying downed woody material. Intermoutian Forest and Range Experiment Station, Forest Service U.S. Department of Agriculture Ogden, Utah, 24p.
- Brown, J.K., Oberheu, R.D. and Johnston, C.M., 1982. Handbook for inventorying surface fuels and biomass in the interior west. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station Ogden, General Technical Report, 48p.
- Cannon, S.H. and De Graff, J., 2009. The increasing wildfire and post-fire debris-flow threat in Western USA, and implications for consequences of climate change: 117-190. In: Sassa, K. and Canuti, P. (Eds.),  Landslides disaster risk reduction. Springer Verlag Berlin Heidelberg Press, 650p.
- Crouse, J.E., 2005. Fuels and fire behavior modeling using Remotely Sensed data in the San Francisco. Master of Since (Forestry). Northern Arizona University, 91p.
- Green, K., Finney, M., Campbell, J., Weinstein D. and Landrum V., 1995. Using GIS to predict fire behavior. Journal of Forestry, 9: 21-25.
- Finney, M.A., Grenfell, I.C., McHugh, C.W., Seli, R.C., Trethewey, D., Stratton, R.D., Brittain, S., 2011. A method for ensemble wild land fire simulation. Environmental Modeling and Assessment, 16: 153-167.
- Jahdi, R., 2015. Fire spread simulation using Geographic Information System (Case study: Golestan National Park). Ph.D. thesis, Department of Forestry and Forest Economic, The Faculty of Natural Resources, University of  Tehran, Karaj, Iran. 162p.
- Jenness, J., Wynne, J.J., 2005. Cohen's kappa and classification table metrics 2.0: An ArcView 3.x extension for accuracy assessment of spatially explicit models. Flagstaff, AZ: U.S. geological survey, Southwest Biological Science Center. 86p.
- Koutsias, N., and Karteris, M., 2000. Burned areas mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image. International Journal of Remote Sensing, 21: 673-687.
- Lutes, D.C. and Keane R.E., 2006. Fuel Load (FL) sampling method. Forest Service General Technology Report, 27p.
- Maffei, C. and Menenti, M., 2012. The potential of remote sensing measurements of canopy reflectance for the evaluation of live fuel moisture content and fire hazard mapping: 9-14. In:  Spano, D., Bacciu, V., Salis, M. and  Sirca, C. (Eds.).  Modeling fire  behavior and risk. Supported by proterina-C Project EU Italia- Francia Marittimo Programme Press, 260p.
- Martınez, J., Vega-Garcia C. and Chuvieco E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management 90: 1241–1252.
- Nalder, I.A., Wein, R.W., Alexander, M.E., de Groot, W.J., 1999. Physical properties of dead and downed roundwood fuels in the boreal forests of western and northern Canada. Int. J. Wildland Fire, 9: 85–99.
- Noonan-Wright, E.K., Vaillant N.M. and Reiner A.L., 2013. The Effectiveness and limitations of fuel modeling using the fire and fuels extension to the forest vegetation simulatore , Forest Science, 60(2): 231–240.
- Opperman, T., Gould, J., Finney, M. and Tymstra, C., 2006. Applying fire spread simulators in New Zealand and Australia: Results from an international seminar. In: Andrews, P.L.; Butler, B.W. (comps). 2006. Fuels Management-How to Measure Success: Conference Proceedings. 28-30 March 2006, Portland, Oregon. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado. Proceedings RMRS-P-41. pp 201-212.
- Parresol, B.R., Scott, J.H., Andreu, A., Prichard, S. and Kurth, L., 2012. Developing custom fire behaviore fuel models from ecologically complex fuel structures for upper Atlantic coastal plain forest. Forest Ecology and Management, 273: 50–57.
- Platt, R.V., Schoennagel, T., Veblen, T.T. and Sherriff, R.L., 2011. Modeling wildfire potential in residential parcels: A case study of the North-Central Colorado front range. Landscape and Urban Planning, 102: 117– 126.
- Salis, M., 2007. Fire behavior simulation in Mediterranean maquis using Farsite. PhD thesis, Sassari University, Sardinia, 166p.
- Scott, J.H. and Burgan R.E., 2005. Standard fire behavior and fuel models: A comprehensive set for use with Rothermels surface fire spread model. United States Department of Agriculture Forest Service, Rocky Mountain Research Station General Technical Report, 72p.
- Scott, J.H. 2012. Introduction to fire behavior modeling. National Interagency Fuels, Fire, & Vegetation Technology Transfer, Integrating Science, Technology and Fire Management, Wildland Fire Management Rd & A., 149p.
 - Taylor, S.W., Woolford D.G., Dean C.B. and Martell D.L., 2013. Wildfire prediction to inform fire management: statistical science challenges. Statistical Science, 28(4): 586–615.
- Vaillant, N.M., Ager, A.A., Anderson, J. and Miller, L., 2013. ArcFuels User Guide and Tutorial: for Use with ArcGIS 9. General Technology Report PNWGTR- 877. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 256P.
- Zahn, S. and Henson, C., 2011. A synthesis of fuel moisture collection methods and equipment-a desk guide. U.S. Department of Agriculture Forest Service National Technology and Development Program 5100-fire management, 31p.
- Zobeiri, M. 2002. Forest Biometry. ISBN: 964-03-4524-5, Tehran University Press 2561, 411p (In Persian).