-Ahmad, R., Hussain, S., Anjum, M.A., Khalid, M.F., Saqib, M., Zakir, I., Hassan, A., Fahad, S. and Ahmad, S., 2019. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches, pp.191-205. https://doi.org/10.1007/978-3-030-06118-0_8
-Ahmed, M., Tóth, Z. and Decsi, K., 2024. The impact of salinity on crop yields and the confrontational behavior of transcriptional regulators, nanoparticles, and antioxidant defensive mechanisms under stressful conditions: A review. International Journal of Molecular Sciences, 25(5): 2654. https://doi.org/10.3390/ijms25052654
-Al-Fraihat, A.H., Al-Dalain, S.Y., Zatimeh, A.A. and Haddad, M.A., 2023. Enhancing rosemary (Rosmarinus officinalis L.) growth and volatile oil constituents grown under soil salinity stress by some amino acids. Horticulturae, 9(2): 252. https://doi.org/10.3390/horticulturae9020252
-Ali, A., Kant, K., Kaur, N., Gupta, S., Jindal, P., Gill, S.S. and Naeem, M., 2024. Salicylic acid: Homeostasis, signalling and phytohormone crosstalk in plants under environmental challenges. South African Journal of Botany, 169: 314-335. https://doi.org/10.1016/j.sajb.2024.04.012
-Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156: 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
-Bates, L.S., Waldren, R.P.A. and Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39: 205-207. http://dx.doi.org/10.1007/BF00018060
-Boorboori, M.R. and Li, J., 2025. The effect of salinity stress on tomato defense mechanisms and exogenous application of salicylic acid, abscisic acid, and melatonin to reduce salinity stress. Soil Science and Plant Nutrition, 71(1): 93-110. https://doi.org/10.1080/00380768.2024.2405834
-Bulgari, R., Morgutti, S., Cocetta, G., Negrini, N., Farris, S., Calcante, A., Spinardi, A., Ferrari, E., Mignani, I., Oberti, R. and Ferrante, A., 2017. Evaluation of borage extracts as potential biostimulant using a phenomic, agronomic, physiological, and biochemical approach. Frontiers in Plant Science, 8: 935.
-Chance, B. and Maehly, A. C., 1955. Assay of catalases and peroxidases, 2: 764-775. https://doi.org/10.1002/9780470110171.ch14
-Ehtaiwesh, A.F., 2022. The effect of salinity on nutrient availability and uptake in crop plants. Scientific Journal of Applied Sciences of Sabratha University, 9(9): 55-73. https://doi.org/10.47891/sabujas.v0i0.55-73
-Farzane, A., Nemati, H., Shoor, M. and Ansari, H., 2020. Antioxidant enzyme and plant productivity changes in field-grown tomato under drought stress conditions using exogenous putrescine. Journal of Plant Physiology and Breeding, 10(1): 29-40.
-Garoosi, M.K., Sanjarian, F. and Chaichi, M., 2023. The role of γ-aminobutyric acid and salicylic acid in heat stress tolerance under salinity conditions in Origanum vulgare L. Plos one, 18(7), p.e0288169.
-Golkar, P., Taghizadeh, M. and Yousefian, Z., 2019. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC), 137(3): 575-585. https://doi.org/10.1007/s11240-019-01592-9
-Hosseini, T., Shekari, F. and Ghorbanli, M., 2010. Effect of salt stress on ion content, proline and antioxidative enzymes of two safflower cultivars (Carthamus tinctorius L.). J. Food Agric. Environ, 8(2): 1080-1086.
-Hussein, O.S. and Abdelkadr, A., 2024. Metabolomics Profiling of Chilled (Coriandrum sativum L.) Primed by Silicate, Humic acid and Gamma Radiation. Arab Journal of Nuclear Sciences and Applications, 57(2): 85-99.
https://doi.org/10.21608/ajnsa.2024.250145.1793
-Isah, T., 2019. Stress and defense responses in plant secondary metabolites production. Biological research, 52(39): 1-25. https://doi.org/10.1186/s40659-019-0246-3
-Jiménez, A.D.C., 2019. Biological, Chemical, and Physical Investigation of Natural Terpenes (Doctoral dissertation, Texas Southern University).
-Li Pomi, F., Papa, V., Borgia, F., Vaccaro, M., Allegra, A., Cicero, N. and Gangemi, S., 2023. Rosmarinus officinalis and skin: antioxidant activity and possible therapeutical role in cutaneous diseases. Antioxidants, 12(3): 680. https://doi.org/10.3390/antiox12030680
-Mahajan, M. and Pal, P.K., 2023. Drought and salinity stress in medicinal and aromatic plants: Physiological response, adaptive mechanism, management/amelioration strategies, and an opportunity for production of bioactive compounds. Advances in Agronomy, 182: 221-273. https://doi.org/10.1016/bs.agron.2023.06.005
-Majeed, A. and Muhammad, Z., 2019. Salinity: a major agricultural problem—causes, impacts on crop productivity and management strategies. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches, pp.83-99. https://doi.org/10.1007/978-3-030-06118-0_3
-Mohammadi, M., Nezamdoost, D., Khosravi Far, F., Zulfiqar, F., Eghlima, G. and Aghamir, F., 2024. Exogenous putrescine application imparts salt stress-induced oxidative stress tolerance via regulating antioxidant activity, potassium uptake, and abscisic acid to gibberellin ratio in Zinnia flowers. BMC Plant Biology, 24(1): 865. https://doi.org/10.1186/s12870-024-05560-0
-Mohammed, H.A., Emwas, A.H. and Khan, R.A., 2023. Salt-tolerant plants, halophytes, as renewable natural resources for cancer prevention and treatment: roles of phenolics and flavonoids in immunomodulation and suppression of oxidative stress towards cancer management. International Journal of Molecular Sciences, 24(6): 5171. https://doi.org/10.3390/ijms24065171
-Misra, N. and Saxena, P., 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3): 181-189. https://doi.org/10.1016/j.plantsci.2009.05.007
-Mutlu, S.A.L.I.H., Atici, Ö. and Nalbantoglu, B., 2009. Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia Plantarum, 53: 334-338. https://doi.org/10.1007/s10535-009-0061-8
-Nahar, K., Hasanuzzaman, M. and Fujita, M., 2016. Roles of osmolytes in plant adaptation to drought and salinity. Osmolytes and plants acclimation to changing environment: Emerging omics technologies, pp.37-68. https://doi.org/10.1007/978-81-322-2616-1_4
-Noreen, S., Ashraf, M., Hussain, M. and Jamil, A., 2009. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) Pakistan Journal of Botany, 41(1): 473-479.
-Sadia, H., Shahbaz, M., Kiran, A. and Saleem, M.F., 2023. Interactive effect of salicylic acid and ascorbic acid on gaseous exchange and mineral nutrients of chicory (Cichorium intybus L.) under saline conditions. Pak J Bot, 55(6): 1999-2012. https://doi.org/10.30848/PJB2023-6(22)
-Salam, U., Ullah, S., Tang, Z.H., Elateeq, A.A., Khan, Y., Khan, J., Khan, A. and Ali, S., 2023. Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors. Life, 13(3): 706. https://doi.org/10.3390/life13030706
-Sattarzadeh, E., Yarnia, M., Khalilvand Behrooznia, E., Mirshekari, B. and Rashidi, V., 2023. Investigation of the possibility of reducing the effects of low irrigation of lavender (Lavandula officinalis L.) using biofertilizers and phosphorus through changes in some morphological and biochemical characteristics. Environmental Stresses in Crop Sciences, 16(4): 1153-1171.
-Schubert, S. and Qadir, M., 2024. Soil Salinity and Salt Resistance of Crop Plants. Springer International Publishing. https://doi.org/10.1007/978-3-031-73250-8
-Shankar, A., Ali, A., Abdullah, H.M., Balaji, J., Kaur, J., Saeed, F., Wasiq, M., Imran, A., Jibraeel, H., Raheem, M.S. and Aslam, A., 2024. Nutritional Composition, Phytochemical Profile, Therapeutic Potentials, and Food Applications of Rosemary: A Comprehensive Review. Journal of Food Composition and Analysis, 135: 1-12.
-Silva, S., Costa, E. M., Calhau, C., Morais, R. M. and Pintado, M.E., 2017. Anthocyanin extraction from plant tissues: A review. Critical reviews in food science and nutrition, 57(14): 3072-3083. https://doi.org/10.1080/10408398.2015.1087963
-Turkyilmaz Unal, B., Mentis, O. and Akyol, E., 2015. Effects of exogenous salicylic acid on antioxidant activity and proline accumulation in apple (Malus domestica L.). Horticulture, Environment, and Biotechnology, 56: 606-611. https://doi.org/10.1007/s13580-015-0049-6
-Yemm, E.W. and Willis, A., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical journal, 57(3): 508-514. https://doi.org/10.1042/bj0570508
-Zhong, M., Yue, L., Liu, W., Qin, H., Lei, B., Huang, R., Yang, X. and Kang, Y., 2023. Genome-wide identification and characterization of the polyamine uptake transporter (Put) gene family in tomatoes and the role of Put2 in response to salt stress. Antioxidants, 12(2): 1-24. https://doi.org/10.3390/antiox12020228
-Zulfiqar, F. and Ashraf, M., 2023. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation, 42(8): 4629-4651. https://doi.org/10.1007/s00344-022-10839-3