-Abedini, M., Shishegaran, M. and Ghale, E., 2022. Monitoring and estimating the fire-affected areas of the Zagros mountains using landsat satellite images. Geography and Environmental Planning, 33(4): 49-62 (In Persian).
-Alhaj Khalaf, M., Shataee, S. and Jahdi, R., 2020. Ability and sensitivity study of spectral indices for wildfire severity mapping (Case study: Arabdagh-Golestan reforestations). Forest and Wood Products, 73(1): 97-110 (In Persian).
-Anderson, J.R., 1976. A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
-Ariza, A., Salas Rey, J. and Merino de Miguel, S., 2019. Comparison of maximum likelihood estimators and regression models for burn severity mapping in Mediterranean forests using Landsat TM and ETM+ data. Revista cartográfica, (98): 145-177.
-Atak, B.K. and Tonyaloğlu, E.E., 2020. Evaluating spectral indices for estimating burned areas in the case of Izmir/Turkey. Eurasian Journal of Forest Science, 8(1): 49-59.
-Baig, M.H.A., Zhang, L., Shuai, T. and Tong, Q., 2014. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5(5): 423-431.
-Barsi, J.A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M.O., Kaewmanee, M., Leigh, L. and Markham, B.L., 2018. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. European Journal of Remote Sensing, 51(1): 822-837.
-Bastarrika, A., Chuvieco, E. and Martín, M.P., 2011. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote sensing of Environment, 115(4): 1003-1012.
-Bastin, G., Ludwig, J., Eager, R., Liedloff, A., Andison, R. and Cobiac, M., 2003. Vegetation changes in a semiarid tropical savanna, northern Australia: 1973–2002. The Rangeland Journal, 25(1): 3-19.
-ChaharMahal Bakhtiari Province Management and Planning Organization, 2017. Chaharmahal va Bakhtiyari Province statistics Yearbook, 768 p (In Persian).
-Chen, W., Moriya, K., Sakai, T., Koyama, L. and Cao, C.X., 2016. Mapping a burned forest area from Landsat TM data by multiple methods. Geomatics, Natural Hazards and Risk, 7(1): 384-402.
-Chuvieco, E., Mouillot, F., Van der Werf, G.R., San Miguel, J., Tanase, M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I. and Heil, A., 2019. Historical background and current developments for mapping burned area from satellite earth observation. Remote Sensing of Environment, 225: 45-64.
-Demsar, J., 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7: 1-30.
-Fathizad, H., Shamsi, R.F., Mahdavi, A. and Arekhi, S., 2015. Comparison of two classification methods of maximum probability and artificial neural network of fuzzy Artmap to produce rangeland cover maps (Case study: rangeland of Doviraj, Dehloran). Iranian Journal of Range and Desert Research, 22(1): 59-72 (In Persian).
-Filipponi, F., 2018, March. BAIS2: Burned area index for Sentinel-2. In Proceedings, 2(7), p. 364. MDPI.
-Fornacca, D., Ren, G. and Xiao, W., 2018. Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of Northwest Yunnan, China. Remote Sensing, 10(8): 1196.
-Henry, M.C., 2008. Comparison of single-and multi-date Landsat data for mapping wildfire scars in Ocala National Forest, Florida. Photogrammetric Engineering and Remote Sensing, 74(7): 881-891.
-Holden, Z.A., Smith, A.M.S., Morgan, P., Rollins, M.G. and Gessler, P.E., 2005. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. International Journal of Remote Sensing, 26(21): 4801-4808.
-Karimi, K., Karamidehkordi, E. and Badsar, M., 2016. The role of rural communities in conservation of rangelands in Mahneshan Township. Rural Development Strategies, 3(1): 1-21 (In Persian).
-Kaufman, Y.J., Wald, A.E., Remer, L.A., Gao, B.C., Li, R.R. and Flynn, L., 1997. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286-1298.
-Lu, B., He, Y. and Tong, A., 2015. Evaluation of spectral indices for estimating burn severity in semiarid grasslands. International Journal of Wildland Fire, 25(2): 147-157.
-Meddens, A.J., Kolden, C.A. and Lutz, J.A., 2016. Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States. Remote Sensing of Environment, 186: 275-285.
-Mitri, G.H. and Gitas, I.Z., 2004. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery. International Journal of Wildland Fire, 13(3): 367-376.
-Mohammadian, A., Asadi Borujeni, E., Ebrahimi, A., Tahmasebi, P. and Naghipour Borj, A.A., 2022. Capability of derived vegetation indices from remotely sensed data for burned area discrimination in semi-steppic rangeland (Case study of CHB province, Iran). Journal of Range and Watershed Managment, 74(4): 837-850 (In Persian).
-Pacheco, A.D.P., da Silva Junior, J.A., Ruiz-Armenteros, A.M., Henriques, R.F.F. and de Oliveira Santos, I., 2023. Analysis of spectral separability for detecting burned areas using landsat-8 OLI/TIRS images under different biomes in Brazil and Portugal. Forests, 14(4): 663.
-Pflugmacher, D., Rabe, A., Peters, M. and Hostert, P., 2019. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sensing of Environment, 221: 583-595.
-Roy, D.P., 1999. Multi-temporal active-fire based burn scar detection algorithm. International Journal of Remote Sensing, 20(5): 1031-1038.
-Shahriary, E., Palmer, M.W., Tongway, D.J., Azarnivand, H., Jafari, M. and Saravi, M.M., 2012. Plant species composition and soil characteristics around Iranian piospheres. Journal of Arid Environments, 82: 106-114 (In Persian).
-Silva, J.M., Pereira, J.M., Cabral, A.I., Sá, A.C., Vasconcelos, M.J., Mota, B. and Grégoire, J.M., 2003. An estimate of the area burned in southern Africa during the 2000 dry season using SPOT‐VEGETATION satellite data. Journal of Geophysical Research: Atmospheres, 108(D13): 1-34.
-Stroppiana, D., Bordogna, G., Carrara, P., Boschetti, M., Boschetti, L. and Brivio, P.A., 2012. A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 69: 88-102.
-Tarhouni, M., Salem, F.B., Belgacem, A.O. and Neffati, M., 2010. Acceptability of plant species along grazing gradients around watering points in Tunisian arid zone. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(7): 454-461(In Persian).
-Thariqa, P., Sitanggang, I.S. and Syaufina, L., 2016. Comparative analysis of spatial decision tree algorithms for burned area of peatland in Rokan Hilir Riau. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(2): 684-691.
-Trager, M.D., Wilson, G.W. and Hartnett, D.C., 2004. Concurrent effects of fire regime, grazing and bison wallowing on tallgrass prairie vegetation. The American midland naturalist, 152(2): 237-247.
-Tran, B.N., Tanase, M.A., Bennett, L.T. and Aponte, C., 2018. Evaluation of spectral indices for assessing fire severity in Australian temperate forests. Remote Sensing, 10(11): 1680.
-Verlinden, A. and Laamanen, R., 2006. Long term fire scar monitoring with remote sensing in northern Namibia: relations between fire frequency, rainfall, land cover, fire management and trees. Environmental Monitoring and Assessment, 112: 231-253.
-Veraverbeke, S., Harris, S. and Hook, S., 2011. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sensing of Environment, 115(10): 2702-2709.