Prediction of spatial land use changes based on LCM in a GIS environment (A case study of Sarabeleh (Ilam), Iran

Document Type : Research Paper

Author

Assisstant Professor, Geography Department, Human Sciences College, Golestan University, Gorgan, Iran

Abstract

   This study aims at monitoring and predicting land use changes using LCM module in the Sarabeleh area. Land sat images of year 1988, 2001 and 2011 were employed to produce digital land use maps. The images were classified into five classes including forest, rangeland, barren land, agriculture and residential areas. LCM module in Idrisi GIS software was used to analyze the land use changes and predict the land uses status in 2011, based on artificial neural network (ANN) and Markov Chain analysis. ANN was trained with various influencing factors include distance from road, distance from residential areas, distance from forest edge, fragmentation index, elevation, slope and aspect. The results indicated that 14691 hectares of the forest cover have been degraded during the period 1988-2011. Furthermore, the barren land areas have been increased 9874 ha in comparison to initial situation. The results of transition power modeling using artificial neural network showed high accuracy in most of the sub modules (60-86%). The total error in modeling for the year 1390 image obtained as12/84% which represents conformity between the predicting of mode land ground truth image and acceptability of the model. Also, the result shows that forest area will decrease in the year 1400 compare to 1390 while, barren lands increase. لندست 7 سال 1380 و TM لندست 7 سال 1390 تجزیه­وتحلیل شد. تصاویر هر سه مقطع زمانی به پنج طبقه جنگل، مرتع، اراضی بایر، اراضی کشاورزی و مناطق مسکونی طبقه‌بندی شد. پیش‌بینی وضعیت کاربری اراضی برای سال 1390، با استفاده از نقشه‌های کاربری سال‌های 1367 و 1380 و به کمک مدل LCM و بر پایه شبکه‌های عصبی مصنوعی و تحلیل زنجیره مارکوف انجام گردید. به این منظور، از متغیر‌های مکانی فاصله از جاده‌، فاصله از مناطق مسکونی، فاصله از حاشیه جنگل، شاخص گسستگی جنگل، ارتفاع، شیب و جهت به‌عنوان عوامل مؤثر بر تغییرات در شبکه عصبی مصنوعی استفاده شد. بنا بر نتایج، در طول دوره 1367-1390، 14691 هکتار جنگل تخریب شده است. همچنین اراضی بایر به مقدار 9874 هکتار نسبت به سطح اولیه خود توسعه یافته است. نتایج مدل‌سازی نیروی انتقال با استفاده از شبکه عصبی مصنوعی در بیشتر زیر مدل­ها صحت بالایی را (60 تا 86 درصد) نشان داد. خطای کل در مدل­سازی برای سال1390، 84/12% به‎دست آمد که نشان‌دهنده انطباق زیاد تصویر پیش‌بینی شده مدل با تصویر واقعیت زمینی و قابل قبول بودن مدل است. همچنین، نتایج پیش­بینی نشان داد که مساحت اراضی جنگلی در سال 1400 در مقایسه با 1390 کاهش و اراضی بایر افزایش خواهند یافت.
 

Keywords


- امینی، م.ر.، شتایی، ش.، معیری، م. ه و غضنفری، ه.، 1385. بررسی تغییرات گستره جنگل زاگرس و ارتباط آن با عوامل فیزیوگرافی و انسانی با استفاده از GIS و RS، مطالعه موردی: جنگل­های آرمرده بانه. پایان­نامه کارشناسی ارشد جنگلداری، دانشگاه گرگان، 157 ص.
- رنجبر، ا.، 1381. بررسی و برآورد روند تخریب جنگل­ها با استفاده ازGIS  و داده­های سنجش از دور. پایان­نامه کارشناسی ارشد سنجش از دور، دانشگاه خواجه نصیرالدین طوسی، 63 ص.
 
- Alavi Paneh,S.K., 2005.Application of remote sensing in Geo sciences.Tehran University Press, 478p. (In persian).
- Arsanjani, J.J., Helbich, M., Kainz, W. and Darvishi Boloorani, A., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geo information, 21: 265-275.
- Bagheri, R. and Shataee, S., 2010. “Modeling forest areas decreases, using logistic regression (case study: Chehel-Chay catchment, Golestan province), Iranian Journal of Forest, 2: 243-252. (In Persian).
- Bonyad, A.A. and Hajy Ghodary, T., 2007.Preparing natural forest map of Zanjan Province by using of ETM+ sensor data of Land sat 7. Journal of Agriculture and Natural Resources Sciences and Technologies, 10(42), 627-638.(In Persian).
- Chen, H. and Pontius Jr, R.G., 2010. Diagnostic tools to evaluate spatial and change projection along gradient of an explanatory variable. Landscape Ecology 25 (9), 1319-1331.
- Eastman, J. R., 2006. IDRISI Andes. Guide to GIS and Image Processing. Clark Labs, Clark University, Worcester, MA.
- Fang, S., Gertner, G.Z., Sun, Z. and Anderson, A.A., 2005.The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landscape and Urban Planning, 73, 294-306.
- Fraser, R.H., Abuelgasim, A. and Latifovic, R ., 2005.A method for detecting large-scale forest cover change using coarse spatial resolution imagery. Remote Sensing of Environment,95, 414-427.
- Kamyab, H., Salman Mahiny, A., Hosseini, M. and Gholamalifard, M., 2010. Adopt a data-driven approach using logistic regression to model the urban growth in Gorgan. Journal of Environmental Studies, 36, 89-96. (In Persian).
- Goldavi, S., 2011. Comparison of logistic regression and Geomod in land cover change modeling and vegetation and effect of change on water (case study: Gorgan). M. Sc Thesis, Department of Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,114p. (In Persian).
- Hu, Z. and Lo, C.P., 2007.Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31, 667-688.
- Khoi, D. D. and Murayama, Y., 2010. Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam. Remote Sensing 2(5), 1249–1272.
- Kim, O.S., 2010. An Assessment of Deforestation Models for Reducing Emissions from Deforestation and Forest Degradation (REDD). Transactions in GIS, 14, 631-654.
- Lausch, A. and Herzog, F., 2002. Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological indicator,2(1-2),3-15.
- Linkie, M., Smith, R.J. and Leader-Williams, N., 2004. Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodiversity and Conservation 13 (10), 1809-1818.
- Lo, C.P. and Quattrochi, D.A., 2003. Land-use and land-cover change, urban heat island phenomenon, and healt implications: A Remote Sensing Approach. Photogrammetric Engineering and Remote Sensing, 69, 1053-1063.
- Lu, D., Mausel, P., Brondi´zio, E. and Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2407.
-Matheron, G., 1970. La the´orie des variables ge´ne´ralise´es et ses applications. Les Cahiers du Centre de Morphologie Mathe´matiques de Fontainebleau, Fascicule, 5pp.
- Merten,B. and Lambin, E.F., 1997. Spatial modeling of tropical deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Applied Geography 17 (2), 143-162.
- Oñate-Valdivieso, F. and Sendra, J.B., 2010. Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. Journal of Hydrology, 395, 256-263.
- Perez-Vega, A., Mas, J. and Ligmann-Zielinska A.,2012. Comparing two approaches to land use/cover change modeling and their implications forth assessment of biodiversity loss in deciduous tropical forest. Environmental Modeling and Software, 29 (1), 11-23.
- PontiusJr, R.G. and Millones, M., 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32, 4407-4429.
- Rafiee, R., Salman Mahiny, A. and Khorasani, N., 2009.Assessment of changes in urban green spaces of Mashad city using satellite data. International Journal of Applied Earth Observation and Geo information, 11, 431-438.
- Russell-Smith, J., Yates, C., Edwards, A., Allen, G.E., Cook, G.D., Cooke, P., Craig, R., Heath, B. and Smith, R., 2003. Contemporary fire regimes of northern Australia, 1997–1380: change since Aboriginal occupancy, challenges for sustainable management. International Journal of Wild land Fire, 12, 283-297.
- Schneider, L. and Pontius, R.G., 2001. Modeling land use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85: 83-94.
- Schulz, J.J., Cayuela, C., Echeverria, C., Salas, J. and Rey-Benayas, J.M., 2010.Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008).Applied Geography, 30, 436-447.
 
- Schulz, J.J., Cayuela, L., Rey-Benayas, J.M. and Schroder, B.,2011.Factors influencing vegetation cover change in Mediterranean Central Chile (1975–2008). Applied Vegetation Science 14 (4), 1-12.
- Thapa, R.B. and Murayama, Y., 2011. Urban growth modeling of Kathmandu metropolitan region, Nepal.Computers, Environment and Urban Systems 35(1), 25–34.
- Vaclavik,T. and Rogan, J., 2009. Identifying trends in land use / land cover changes in the context of post socialist transformation in Central Europe: A case study of the greater Olomouc region, Czech Republic. GIS science & Remote Sensing 46 (1), 54–76.
- Wu, Q., Li, H., Wang, R., Paulussen, J., He, Y., Wang, M., Wang, B. and Wang, Z., 2006. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78, 322-333.
- Yuan, F., Sawaya, K.E., Loeffelholz, B. C., Bauer, M.E., 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multi temporal Land sat remote sensing. Remote Sensing of Environment, 98: 317-328.