The study of phytoremediation potential of 3 species of Salixalba, S. acmophylla and S. fragilisunder Lead stress

Document Type : Research Paper

Authors

Abstract

Lead (Pb) is one of the most dangerous contaminants to environment. This element has ability to remain in soil for long time and being poisonous to human, animal and plants. Using lead hyper-accumulator plants is a useful method for lead elimination from plotted environment. Lead tolerance determined in three Salix species (Salix alba, S. acmophylla and S. fragilis), in a completely randomized design experiment at Pb concentrations of 0, 50, 100 and 200 mM with 3 replications in form of Pb(No3)2 applied in water of irrigation on 130 days old seedlings. Physiological characters such as sugar soluble, proline, total chlorophyll and Pb concentration in leaves, stem and root measured with ICP (Inductivity Coupled Plasma) device by fresh oxidation's method on the Salix's seedlings, after 75 days of lead treatments. The maximum amount of Pb fund in leaves of S. alba (311.91 mg/kg dwt) and in roots of S. fragilis (1631.4 mg/kg dwt). With due attention to, S. alba had the most soluble sugar and free proline at 200 and 100 mMPb treatments (1477.78 and 14.18 mg/kg dwt respectively), it can be used for lead reduction from polluted environmental.
 
 

Keywords


رحمانی، ح.، کلباسی، م.،حاج رسولی‎ها، ش.، 1379. آلودگی خاک به‌وسیله سرب حاصل از وسایل نقلیه در محدوده برخی از بزرگراه‌های ایران. مجله علوم و فنون کشاورزی و منابع طبیعی، 4(4):31-414 .
- شریعت، آ.، عصاره، م.، قمری‌زارع، ع.، 1389. اثر کادمیوم بر برخی پارامترهای فیزیولوژیکی در Eucalyptus occidentalis.. علوم و فنون کشاورزی و منابع طبیعی، 14(53):145-153.
- محمدی گلنکشی، م.، 1376. بررسی روند اثرات فلزات سنگین بر منابع آبی استان خوزستان بعد از آتش‌سوزی چاه‌های نفت کویت. پایان‌نامه کارشناسی ارشد مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه تربیت مدرس.
 
- Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U. N., Singh, S. N. and Singh, S.P., 2002. Phytoremediation of lead, nickel and copper by Salix acmophyllaBoiss.: Role of antioxidant enzymes and antioxidant substances. Bulletin of Environmental Contamination and Toxicology, 70(3):462–469.
- Alloway, B.J., 1990. Heavy Metals in Soils: Lead. Blackie and Glasgow.Ltd. London.p 177-196.
- Bates, I.S., Waldern, R. P., Teare, I. D., 1973. Rapid determination of free prolin for water stress studies. Plant and Soil, 39:205-207.
- Bergmann, DC., 2004. Integrating signals in stomata development. Current Opinion in Plant Biol. 7: 26–32.
- El-enany, A.E. and Issa, A.A., 2001. Proline Alleviates Heavy Metal Stress in Scenedesmusarmatus. .Folia Microbiologica. 46 (3): 227-230.
- Hare, P.D., Cress, W.A., 1996. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21(2): 79–102.
- Ho, S., Chao, Y., Tong, W., Yu, S., 2001. Sugar coordinately and differentially regulates growth and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiology, 46:281-285.
- Irigoyen, J.J., Einerich, DW., Sanchez-Diaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in modulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84: 58-60.
- Levy, D.B., Redente, E.F. ,Uphoff, G.D., 1999. Evaluating the phytotoxicity of Pb-Zn tailings to big bluestem (Andropogongerardiivitman) and swichgrass (Panicumvirgatum L.). Soil Science, 164(6):363-375.
- Lutts, S.J., Kint, M., Bouharmount, J., 1996. Effect of various salts and mannitolon ion and prolin accumulation in relation to osmotic adjustment in rice (Orizasativum) callus cultures. Journal of Plant Physiology, 149: 186-195.
- Mleczek, M., Łukaszewski, M., Kaczmarek, Z., Rissmann, I., Golinskia, P., 2008. Efficiency of selected heavy metals accumulation by Salix viminalisroots. Environmental and Experimental Botany, 65(1):48-53.
- Mleczek, M., Rissmann, I., Rutkowski, P., Kaczmarek, Z., Golinski, P., 2009. Accumulation of selected heavy metals by different genotypes of Salix. Environmental and Experimental Botany, 66: 289–296.
- Mleczek, M., Rutkowski, P., Rissmann, I., Kaczmarek, Z., Golinski, P., Szentner, K., Strazynska, K., Stachowiak, A., 2009. Biomassproductivityandphytoremediationpotential of Salix alba and S. viminalis. Biomass and Bioenergy, (34):1410-1418.
- Moor, R.H., 1960. Laboratory Guide for Elementary Plant Physiology. Burgess Pub., Minneapolis.
- Pulford, I.D., Watson, C., 2002. Phytoremediation of heavy metal-contaminated land by trees. Environment International, 29(4):529-540.
- Suzan, A., Sayed., 1999. Effects of lead and kinetin on the growth, and some physiologicalcomponents of safflower.Plant Growth Regulation, 29)3(:167-174.
- Vandecasteele, B., Meers, E., Vervaeke, P., De Vos, B., Quataert, P., Tack, F., M.G. 2004. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58(8): 995–1002.
 
- Verma,S., Dubey, R.S., 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice.BiologiaPlantarum,44(1): 117-123.
- Westerma., R.E.L., 1990. Soil Testing and Plant Analysis.SSSA. Madison Wisconsin, USA.
- Yadav, S.K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants, South African Journal of Botany, 76:167–179.